Di Lu, Wenchang Li, Jian Liu, Gang Chen, Zhigang Li
{"title":"一种基于焦平面阵列的可配置尖峰编码电路设计","authors":"Di Lu, Wenchang Li, Jian Liu, Gang Chen, Zhigang Li","doi":"10.3390/app131810092","DOIUrl":null,"url":null,"abstract":"Spiking neural networks inspired by biological models are gaining popularity in artificial intelligence due to their ability to solve diverse problems while reducing energy consumption. As a result of the trade-off between the need to transmit large amounts of data and the power consumption of hardware deployment, artificial vision systems are particularly well-suited to construction using spiking neural networks (SNNs). How to communicate with the neuromorphic network effectively is one of the challenges associated with building systems that utilize SNN systems. It is necessary to convert the data to spike form before they can be processed by an SNN as input, unless neuromorphic or event-triggered sensing systems are employed. We present a configurable circuit based on a focal plane array (FPA) capable of providing spike-encoded readout data at the pixel level. With this type of circuit, the current signal of the photoelectric sensor can be encoded into two spike encodings with different precision, which are sent for processing to SNNs. This provides image information at two different scales for the artificial vision system based on SNNs. With this feature, we can use this circuit and different SNN structures to build an artificial target recognition system that is closer to the biological visual system.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Configurable Spike-Encoding Circuit Based on Focal Plane Array\",\"authors\":\"Di Lu, Wenchang Li, Jian Liu, Gang Chen, Zhigang Li\",\"doi\":\"10.3390/app131810092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural networks inspired by biological models are gaining popularity in artificial intelligence due to their ability to solve diverse problems while reducing energy consumption. As a result of the trade-off between the need to transmit large amounts of data and the power consumption of hardware deployment, artificial vision systems are particularly well-suited to construction using spiking neural networks (SNNs). How to communicate with the neuromorphic network effectively is one of the challenges associated with building systems that utilize SNN systems. It is necessary to convert the data to spike form before they can be processed by an SNN as input, unless neuromorphic or event-triggered sensing systems are employed. We present a configurable circuit based on a focal plane array (FPA) capable of providing spike-encoded readout data at the pixel level. With this type of circuit, the current signal of the photoelectric sensor can be encoded into two spike encodings with different precision, which are sent for processing to SNNs. This provides image information at two different scales for the artificial vision system based on SNNs. With this feature, we can use this circuit and different SNN structures to build an artificial target recognition system that is closer to the biological visual system.\",\"PeriodicalId\":48760,\"journal\":{\"name\":\"Applied Sciences-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences-Basel\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/app131810092\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810092","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Design of a Configurable Spike-Encoding Circuit Based on Focal Plane Array
Spiking neural networks inspired by biological models are gaining popularity in artificial intelligence due to their ability to solve diverse problems while reducing energy consumption. As a result of the trade-off between the need to transmit large amounts of data and the power consumption of hardware deployment, artificial vision systems are particularly well-suited to construction using spiking neural networks (SNNs). How to communicate with the neuromorphic network effectively is one of the challenges associated with building systems that utilize SNN systems. It is necessary to convert the data to spike form before they can be processed by an SNN as input, unless neuromorphic or event-triggered sensing systems are employed. We present a configurable circuit based on a focal plane array (FPA) capable of providing spike-encoded readout data at the pixel level. With this type of circuit, the current signal of the photoelectric sensor can be encoded into two spike encodings with different precision, which are sent for processing to SNNs. This provides image information at two different scales for the artificial vision system based on SNNs. With this feature, we can use this circuit and different SNN structures to build an artificial target recognition system that is closer to the biological visual system.
期刊介绍:
Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.