奥卡姆剃刀上的先验理论解释

IF 4.9 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
D. Bickel
{"title":"奥卡姆剃刀上的先验理论解释","authors":"D. Bickel","doi":"10.1214/19-ba1189","DOIUrl":null,"url":null,"abstract":". In Bayesian statistics, if the distribution of the data is unknown, then each plausible distribution of the data is indexed by a parameter value, and the prior distribution of the parameter is specified. To the extent that more compli-cated data distributions tend to require more coincidences for their construction than simpler data distributions, default prior distributions should be transformed to assign additional prior probability or probability density to the parameter values that refer to simpler data distributions. The proposed transformation of the prior distribution relies on the entropy of each data distribution as the relevant measure of complexity. The transformation is derived from a few first principles and extended to stochastic processes.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Explanatory Rationale for Priors Sharpened Into Occam’s Razors\",\"authors\":\"D. Bickel\",\"doi\":\"10.1214/19-ba1189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In Bayesian statistics, if the distribution of the data is unknown, then each plausible distribution of the data is indexed by a parameter value, and the prior distribution of the parameter is specified. To the extent that more compli-cated data distributions tend to require more coincidences for their construction than simpler data distributions, default prior distributions should be transformed to assign additional prior probability or probability density to the parameter values that refer to simpler data distributions. The proposed transformation of the prior distribution relies on the entropy of each data distribution as the relevant measure of complexity. The transformation is derived from a few first principles and extended to stochastic processes.\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/19-ba1189\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-ba1189","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 6

摘要

在贝叶斯统计中,如果数据的分布是未知的,那么数据的每个看似合理的分布都由一个参数值索引,并指定参数的先验分布。在某种程度上,与更简单的数据分布相比,更复杂的数据分布往往需要更多的一致性来构建它们,因此应该转换默认先验分布,以将额外的先验概率或概率密度分配给引用更简单数据分布的参数值。所提出的先验分布的变换依赖于每个数据分布的熵作为复杂度的相关度量。该变换源于一些第一原理,并扩展到随机过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Explanatory Rationale for Priors Sharpened Into Occam’s Razors
. In Bayesian statistics, if the distribution of the data is unknown, then each plausible distribution of the data is indexed by a parameter value, and the prior distribution of the parameter is specified. To the extent that more compli-cated data distributions tend to require more coincidences for their construction than simpler data distributions, default prior distributions should be transformed to assign additional prior probability or probability density to the parameter values that refer to simpler data distributions. The proposed transformation of the prior distribution relies on the entropy of each data distribution as the relevant measure of complexity. The transformation is derived from a few first principles and extended to stochastic processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信