关联形式的稳定性

IF 0.9 1区 数学 Q2 MATHEMATICS
M. Fedorchuk, A. Isaev
{"title":"关联形式的稳定性","authors":"M. Fedorchuk, A. Isaev","doi":"10.1090/JAG/719","DOIUrl":null,"url":null,"abstract":"We show that the associated form, or, equivalently, a Macaulay inverse system, of an Artinian complete intersection of type \n\n \n \n (\n d\n ,\n …\n ,\n d\n )\n \n (d,\\dots , d)\n \n\n is polystable. As an application, we obtain an invariant-theoretic variant of the Mather-Yau theorem for homogeneous hypersurface singularities.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/719","citationCount":"5","resultStr":"{\"title\":\"Stability of associated forms\",\"authors\":\"M. Fedorchuk, A. Isaev\",\"doi\":\"10.1090/JAG/719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the associated form, or, equivalently, a Macaulay inverse system, of an Artinian complete intersection of type \\n\\n \\n \\n (\\n d\\n ,\\n …\\n ,\\n d\\n )\\n \\n (d,\\\\dots , d)\\n \\n\\n is polystable. As an application, we obtain an invariant-theoretic variant of the Mather-Yau theorem for homogeneous hypersurface singularities.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/JAG/719\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAG/719\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/719","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们证明了类型为(d,…,d)(d,\dots,d)的Artinian完全交的关联形式,或者等价地,Macaulay逆系统是多稳态的。作为一个应用,我们得到了齐次超曲面奇点的Mather-Yau定理的一个不变理论变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of associated forms
We show that the associated form, or, equivalently, a Macaulay inverse system, of an Artinian complete intersection of type ( d , … , d ) (d,\dots , d) is polystable. As an application, we obtain an invariant-theoretic variant of the Mather-Yau theorem for homogeneous hypersurface singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信