{"title":"大卫·希尔伯特和平面面积理论的基础","authors":"Eduardo N. Giovannini","doi":"10.1007/s00407-021-00278-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper provides a detailed study of David Hilbert’s axiomatization of the theory of plane area, in the classical monograph <i>Foundation of Geometry</i> (1899). On the one hand, we offer a precise contextualization of this theory by considering it against its nineteenth-century geometrical background. Specifically, we examine some crucial steps in the emergence of the modern theory of geometrical equivalence. On the other hand, we analyze from a more conceptual perspective the significance of Hilbert’s theory of area for the foundational program pursued in <i>Foundations</i>. We argue that this theory played a fundamental role in the general attempt to provide a new independent basis for Euclidean geometry. Furthermore, we contend that our examination proves relevant for understanding the requirement of “purity of the method” in the tradition of modern synthetic geometry.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"75 6","pages":"649 - 698"},"PeriodicalIF":0.7000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00407-021-00278-z","citationCount":"2","resultStr":"{\"title\":\"David Hilbert and the foundations of the theory of plane area\",\"authors\":\"Eduardo N. Giovannini\",\"doi\":\"10.1007/s00407-021-00278-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper provides a detailed study of David Hilbert’s axiomatization of the theory of plane area, in the classical monograph <i>Foundation of Geometry</i> (1899). On the one hand, we offer a precise contextualization of this theory by considering it against its nineteenth-century geometrical background. Specifically, we examine some crucial steps in the emergence of the modern theory of geometrical equivalence. On the other hand, we analyze from a more conceptual perspective the significance of Hilbert’s theory of area for the foundational program pursued in <i>Foundations</i>. We argue that this theory played a fundamental role in the general attempt to provide a new independent basis for Euclidean geometry. Furthermore, we contend that our examination proves relevant for understanding the requirement of “purity of the method” in the tradition of modern synthetic geometry.</p></div>\",\"PeriodicalId\":50982,\"journal\":{\"name\":\"Archive for History of Exact Sciences\",\"volume\":\"75 6\",\"pages\":\"649 - 698\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00407-021-00278-z\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for History of Exact Sciences\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00407-021-00278-z\",\"RegionNum\":2,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for History of Exact Sciences","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s00407-021-00278-z","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
David Hilbert and the foundations of the theory of plane area
This paper provides a detailed study of David Hilbert’s axiomatization of the theory of plane area, in the classical monograph Foundation of Geometry (1899). On the one hand, we offer a precise contextualization of this theory by considering it against its nineteenth-century geometrical background. Specifically, we examine some crucial steps in the emergence of the modern theory of geometrical equivalence. On the other hand, we analyze from a more conceptual perspective the significance of Hilbert’s theory of area for the foundational program pursued in Foundations. We argue that this theory played a fundamental role in the general attempt to provide a new independent basis for Euclidean geometry. Furthermore, we contend that our examination proves relevant for understanding the requirement of “purity of the method” in the tradition of modern synthetic geometry.
期刊介绍:
The Archive for History of Exact Sciences casts light upon the conceptual groundwork of the sciences by analyzing the historical course of rigorous quantitative thought and the precise theory of nature in the fields of mathematics, physics, technical chemistry, computer science, astronomy, and the biological sciences, embracing as well their connections to experiment. This journal nourishes historical research meeting the standards of the mathematical sciences. Its aim is to give rapid and full publication to writings of exceptional depth, scope, and permanence.