在大量卫星场景中创新使用变化检测,并具有地质应用

IF 1.3 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL
P. Cole, H. Coetzee
{"title":"在大量卫星场景中创新使用变化检测,并具有地质应用","authors":"P. Cole, H. Coetzee","doi":"10.1144/qjegh2022-048","DOIUrl":null,"url":null,"abstract":"The large number of remote sensing datasets available necessitates the development of efficient methods when assessing change between such data. A series of techniques, optimising the analysis of change detection, specifically on large remote sensing dataset collections, is demonstrated. Iterative (online) statistical measures for mean and standard deviation give the ability to gain a measure of change over potentially hundreds of datasets without excessive computing power being needed. From this, the coefficient of variation can be used to provide further insight. Using such measures, seasonal change can be detected on outcrop (as opposed to vegetation), illustrating that change detection can be used to further extend a spectral signature for rocks. Twelve Sentinel-2 scenes over a three-year period were used in this study.Thematic collection: This article is part of the Remote sensing for site investigations on Earth and other planets collection available at: https://www.lyellcollection.org/cc/remote-sensing-for-site-investigations-on-earth-and-other-planets","PeriodicalId":20937,"journal":{"name":"Quarterly Journal of Engineering Geology and Hydrogeology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative use of change detection in large numbers of satellite scenes, with geological applications\",\"authors\":\"P. Cole, H. Coetzee\",\"doi\":\"10.1144/qjegh2022-048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large number of remote sensing datasets available necessitates the development of efficient methods when assessing change between such data. A series of techniques, optimising the analysis of change detection, specifically on large remote sensing dataset collections, is demonstrated. Iterative (online) statistical measures for mean and standard deviation give the ability to gain a measure of change over potentially hundreds of datasets without excessive computing power being needed. From this, the coefficient of variation can be used to provide further insight. Using such measures, seasonal change can be detected on outcrop (as opposed to vegetation), illustrating that change detection can be used to further extend a spectral signature for rocks. Twelve Sentinel-2 scenes over a three-year period were used in this study.Thematic collection: This article is part of the Remote sensing for site investigations on Earth and other planets collection available at: https://www.lyellcollection.org/cc/remote-sensing-for-site-investigations-on-earth-and-other-planets\",\"PeriodicalId\":20937,\"journal\":{\"name\":\"Quarterly Journal of Engineering Geology and Hydrogeology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Engineering Geology and Hydrogeology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/qjegh2022-048\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Engineering Geology and Hydrogeology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/qjegh2022-048","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

现有的大量遥感数据集需要在评估这些数据之间的变化时开发有效的方法。演示了一系列优化变化检测分析的技术,特别是在大型遥感数据集上。平均值和标准差的迭代(在线)统计测量提供了在不需要过度计算能力的情况下获得潜在数百个数据集的变化测量的能力。由此,可以使用变异系数来提供进一步的见解。使用这些措施,可以在露头(而不是植被)上检测到季节变化,这表明变化检测可以用于进一步扩展岩石的光谱特征。本研究使用了三年时间内的12个Sentinel-2场景。专题集:本文是地球和其他行星遥感现场调查集的一部分,可在以下网站获取:https://www.lyellcollection.org/cc/remote-sensing-for-site-investigations-on-earth-and-other-planets
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovative use of change detection in large numbers of satellite scenes, with geological applications
The large number of remote sensing datasets available necessitates the development of efficient methods when assessing change between such data. A series of techniques, optimising the analysis of change detection, specifically on large remote sensing dataset collections, is demonstrated. Iterative (online) statistical measures for mean and standard deviation give the ability to gain a measure of change over potentially hundreds of datasets without excessive computing power being needed. From this, the coefficient of variation can be used to provide further insight. Using such measures, seasonal change can be detected on outcrop (as opposed to vegetation), illustrating that change detection can be used to further extend a spectral signature for rocks. Twelve Sentinel-2 scenes over a three-year period were used in this study.Thematic collection: This article is part of the Remote sensing for site investigations on Earth and other planets collection available at: https://www.lyellcollection.org/cc/remote-sensing-for-site-investigations-on-earth-and-other-planets
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
14.30%
发文量
66
审稿时长
6 months
期刊介绍: Quarterly Journal of Engineering Geology and Hydrogeology is owned by the Geological Society of London and published by the Geological Society Publishing House. Quarterly Journal of Engineering Geology & Hydrogeology (QJEGH) is an established peer reviewed international journal featuring papers on geology as applied to civil engineering mining practice and water resources. Papers are invited from, and about, all areas of the world on engineering geology and hydrogeology topics. This includes but is not limited to: applied geophysics, engineering geomorphology, environmental geology, hydrogeology, groundwater quality, ground source heat, contaminated land, waste management, land use planning, geotechnics, rock mechanics, geomaterials and geological hazards. The journal publishes the prestigious Glossop and Ineson lectures, research papers, case studies, review articles, technical notes, photographic features, thematic sets, discussion papers, editorial opinion and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信