具有双面内栅极的独立氧化基神经形态晶体管的突触超塑性仿真

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shanshan Jiang, Yongli He, Rui Liu, Chenxi Zhang, Yi Shi, Qing Wan
{"title":"具有双面内栅极的独立氧化基神经形态晶体管的突触超塑性仿真","authors":"Shanshan Jiang, Yongli He, Rui Liu, Chenxi Zhang, Yi Shi, Qing Wan","doi":"10.1088/1361-6463/abdc92","DOIUrl":null,"url":null,"abstract":"Synaptic plasticity is a basic characteristic of synapses and plays an important role in the computation, learning and memory of human brain. Metaplasticity is a higher-order form of synaptic plasticity, which regulates the ability of synapses to generate synaptic plasticity and has a great regulating effect on later learning, memory and coping behaviors. At present, there are rarely reports on the emulation of synaptic metaplasticity in synaptic transistor. In this article, flexible dual-gate indium-zinc-oxide neuromorphic devices on freestanding solid-state proton conducting chitosan electrolyte membrane are designed for metaplasticity emulation. The key synaptic plasticity functions including excitatory postsynaptic current, synaptic paired-pulse response and synaptic pulse train response can be effectively regulated by the priming pulse stimuli. Besides, configurable synaptic depression and synaptic potentiation effect can be realized in such device. These results can expand the potential applications of the multi-terminal electrolyte-gated oxide transistors for flexible dynamic neuromorphic platforms.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Synaptic metaplasticity emulation in a freestanding oxide-based neuromorphic transistor with dual in-plane gates\",\"authors\":\"Shanshan Jiang, Yongli He, Rui Liu, Chenxi Zhang, Yi Shi, Qing Wan\",\"doi\":\"10.1088/1361-6463/abdc92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synaptic plasticity is a basic characteristic of synapses and plays an important role in the computation, learning and memory of human brain. Metaplasticity is a higher-order form of synaptic plasticity, which regulates the ability of synapses to generate synaptic plasticity and has a great regulating effect on later learning, memory and coping behaviors. At present, there are rarely reports on the emulation of synaptic metaplasticity in synaptic transistor. In this article, flexible dual-gate indium-zinc-oxide neuromorphic devices on freestanding solid-state proton conducting chitosan electrolyte membrane are designed for metaplasticity emulation. The key synaptic plasticity functions including excitatory postsynaptic current, synaptic paired-pulse response and synaptic pulse train response can be effectively regulated by the priming pulse stimuli. Besides, configurable synaptic depression and synaptic potentiation effect can be realized in such device. These results can expand the potential applications of the multi-terminal electrolyte-gated oxide transistors for flexible dynamic neuromorphic platforms.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2021-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/abdc92\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/abdc92","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 8

摘要

突触可塑性是突触的一个基本特征,在人脑的计算、学习和记忆中起着重要作用。元可塑性是突触可塑性的一种高阶形式,它调节突触产生突触可塑性,对后期的学习、记忆和应对行为有很大的调节作用。目前,很少有关于突触晶体管中突触化塑性模拟的报道。在本文中,设计了在独立的固态质子传导壳聚糖电解质膜上的柔性双栅极氧化铟锌神经形态器件,用于化塑性模拟。启动脉冲刺激可以有效调节突触的关键可塑性功能,包括兴奋性突触后电流、突触配对脉冲反应和突触脉冲串反应。此外,该装置还可以实现可配置的突触抑制和突触增强效应。这些结果可以扩展多端电解质门控氧化物晶体管在柔性动态神经形态平台中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synaptic metaplasticity emulation in a freestanding oxide-based neuromorphic transistor with dual in-plane gates
Synaptic plasticity is a basic characteristic of synapses and plays an important role in the computation, learning and memory of human brain. Metaplasticity is a higher-order form of synaptic plasticity, which regulates the ability of synapses to generate synaptic plasticity and has a great regulating effect on later learning, memory and coping behaviors. At present, there are rarely reports on the emulation of synaptic metaplasticity in synaptic transistor. In this article, flexible dual-gate indium-zinc-oxide neuromorphic devices on freestanding solid-state proton conducting chitosan electrolyte membrane are designed for metaplasticity emulation. The key synaptic plasticity functions including excitatory postsynaptic current, synaptic paired-pulse response and synaptic pulse train response can be effectively regulated by the priming pulse stimuli. Besides, configurable synaptic depression and synaptic potentiation effect can be realized in such device. These results can expand the potential applications of the multi-terminal electrolyte-gated oxide transistors for flexible dynamic neuromorphic platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信