金黄色葡萄球菌甲酸脱氢酶活性位点的工程设计:在结构中引入附加环和组氨酸残基

IF 0.7 Q4 CHEMISTRY, MULTIDISCIPLINARY
T. S. Iurchenko, A. A. Loginova, E. P. Sergeev, E. V. Pometun, V. I. Tishkov, S. S. Savin, A. A. Pometun
{"title":"金黄色葡萄球菌甲酸脱氢酶活性位点的工程设计:在结构中引入附加环和组氨酸残基","authors":"T. S. Iurchenko,&nbsp;A. A. Loginova,&nbsp;E. P. Sergeev,&nbsp;E. V. Pometun,&nbsp;V. I. Tishkov,&nbsp;S. S. Savin,&nbsp;A. A. Pometun","doi":"10.3103/S0027131423010078","DOIUrl":null,"url":null,"abstract":"<p>NAD<sup>+</sup>-dependent formate dehydrogenase (EC 1.2.1.2, FDH) from pathogenic bacterium <i>Staphylococcus aureus</i> (SauFDH) differs significantly from other FDHs both in terms of primary structure and catalytic properties. A distinctive feature of SauFDH is the highest (about 2.5–3 times) specific activity compared to other formate dehydrogenases. At the same time, SauFDH has high Michaelis constants for both substrates. Based on the analysis of three-dimensional structures and the alignment of amino acid sequences, replacements promising in terms of changing catalytic parameters were selected. The replacement of I220H resulted in an increase in <span>\\(K_{{\\text{M}}}^{{{\\text{NA}}{{{\\text{D}}}^{{\\text{ + }}}}}}\\)</span>; the value of <i>k</i><sub>cat</sub> has not changed. When T250H is replaced, an increase in <span>\\(K_{{\\text{M}}}^{{{\\text{NA}}{{{\\text{D}}}^{{\\text{ + }}}}}}\\)</span> is observed, <i>k</i><sub>cat</sub> decreases from 20 to 13 s<sup>–1</sup>. The replacement of K368H led to a slight increase in <span>\\(K_{{\\text{M}}}^{{{\\text{NA}}{{{\\text{D}}}^{{\\text{ + }}}}}}\\)</span>, <i>k</i><sub>cat</sub> decreased from 20 to 6 s<sup>–1</sup>. The introduction of TGA and AGA additional inserts in α-helix at the C-terminus of the enzyme led to an increase in <span>\\(K_{{\\text{M}}}^{{{\\text{NA}}{{{\\text{D}}}^{{\\text{ + }}}}}}\\)</span> and <span>\\(K_{{\\text{M}}}^{{{\\text{HCO}}{{{\\text{O}}}^{ - }}}}\\)</span>. A bigger effect was observed for <span>\\(K_{{\\text{M}}}^{{{\\text{NA}}{{{\\text{D}}}^{{\\text{ + }}}}}}\\)</span>—the difference was more than 10 times. For mutant SauFDH with insertions <i>k</i><sub>cat</sub> significantly reduced to 4 s<sup>–1</sup>. Similar results were observed for mutants with multipoint replacements. Thus, the C-terminal sequence has been shown to play an important role in the catalysis of SauFDH.</p>","PeriodicalId":709,"journal":{"name":"Moscow University Chemistry Bulletin","volume":"78 1","pages":"42 - 53"},"PeriodicalIF":0.7000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering the Active Site of Formate Dehydrogenase from Staphylococcus aureus: Introduction of the Additional Loop and Histigine Residues to the Structure\",\"authors\":\"T. S. Iurchenko,&nbsp;A. A. Loginova,&nbsp;E. P. Sergeev,&nbsp;E. V. Pometun,&nbsp;V. I. Tishkov,&nbsp;S. S. Savin,&nbsp;A. A. Pometun\",\"doi\":\"10.3103/S0027131423010078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>NAD<sup>+</sup>-dependent formate dehydrogenase (EC 1.2.1.2, FDH) from pathogenic bacterium <i>Staphylococcus aureus</i> (SauFDH) differs significantly from other FDHs both in terms of primary structure and catalytic properties. A distinctive feature of SauFDH is the highest (about 2.5–3 times) specific activity compared to other formate dehydrogenases. At the same time, SauFDH has high Michaelis constants for both substrates. Based on the analysis of three-dimensional structures and the alignment of amino acid sequences, replacements promising in terms of changing catalytic parameters were selected. The replacement of I220H resulted in an increase in <span>\\\\(K_{{\\\\text{M}}}^{{{\\\\text{NA}}{{{\\\\text{D}}}^{{\\\\text{ + }}}}}}\\\\)</span>; the value of <i>k</i><sub>cat</sub> has not changed. When T250H is replaced, an increase in <span>\\\\(K_{{\\\\text{M}}}^{{{\\\\text{NA}}{{{\\\\text{D}}}^{{\\\\text{ + }}}}}}\\\\)</span> is observed, <i>k</i><sub>cat</sub> decreases from 20 to 13 s<sup>–1</sup>. The replacement of K368H led to a slight increase in <span>\\\\(K_{{\\\\text{M}}}^{{{\\\\text{NA}}{{{\\\\text{D}}}^{{\\\\text{ + }}}}}}\\\\)</span>, <i>k</i><sub>cat</sub> decreased from 20 to 6 s<sup>–1</sup>. The introduction of TGA and AGA additional inserts in α-helix at the C-terminus of the enzyme led to an increase in <span>\\\\(K_{{\\\\text{M}}}^{{{\\\\text{NA}}{{{\\\\text{D}}}^{{\\\\text{ + }}}}}}\\\\)</span> and <span>\\\\(K_{{\\\\text{M}}}^{{{\\\\text{HCO}}{{{\\\\text{O}}}^{ - }}}}\\\\)</span>. A bigger effect was observed for <span>\\\\(K_{{\\\\text{M}}}^{{{\\\\text{NA}}{{{\\\\text{D}}}^{{\\\\text{ + }}}}}}\\\\)</span>—the difference was more than 10 times. For mutant SauFDH with insertions <i>k</i><sub>cat</sub> significantly reduced to 4 s<sup>–1</sup>. Similar results were observed for mutants with multipoint replacements. Thus, the C-terminal sequence has been shown to play an important role in the catalysis of SauFDH.</p>\",\"PeriodicalId\":709,\"journal\":{\"name\":\"Moscow University Chemistry Bulletin\",\"volume\":\"78 1\",\"pages\":\"42 - 53\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Chemistry Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027131423010078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Chemistry Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0027131423010078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

病原菌金黄色葡萄球菌(SauFDH)的NAD+依赖性甲酸脱氢酶(EC 1.2.1.2, FDH)在一级结构和催化性能上都与其他FDH有很大不同。与其他甲酸脱氢酶相比,SauFDH的一个显著特征是比活性最高(约2.5-3倍)。同时,SauFDH对两种底物都有很高的米氏常数。基于三维结构分析和氨基酸序列比对,选择了在改变催化参数方面有潜力的替代物。替换I220H导致\(K_{{\text{M}}}^{{{\text{NA}}{{{\text{D}}}^{{\text{ + }}}}}}\)增加;kcat的值没有改变。更换T250H后,\(K_{{\text{M}}}^{{{\text{NA}}{{{\text{D}}}^{{\text{ + }}}}}}\)增大,kcat从20 s-1减小到13 s-1。更换K368H导致\(K_{{\text{M}}}^{{{\text{NA}}{{{\text{D}}}^{{\text{ + }}}}}}\)略有增加,kcat从20 s-1下降到6 s-1。在酶的c端α-螺旋中引入TGA和AGA附加插入物导致\(K_{{\text{M}}}^{{{\text{NA}}{{{\text{D}}}^{{\text{ + }}}}}}\)和\(K_{{\text{M}}}^{{{\text{HCO}}{{{\text{O}}}^{ - }}}}\)的增加。在\(K_{{\text{M}}}^{{{\text{NA}}{{{\text{D}}}^{{\text{ + }}}}}}\)上观察到的效果更大——差异超过10倍。对于插入的突变SauFDH, kcat显著降低到4 s-1。在多点替换的突变体中观察到类似的结果。因此,c端序列已被证明在催化SauFDH中起重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering the Active Site of Formate Dehydrogenase from Staphylococcus aureus: Introduction of the Additional Loop and Histigine Residues to the Structure

Engineering the Active Site of Formate Dehydrogenase from Staphylococcus aureus: Introduction of the Additional Loop and Histigine Residues to the Structure

NAD+-dependent formate dehydrogenase (EC 1.2.1.2, FDH) from pathogenic bacterium Staphylococcus aureus (SauFDH) differs significantly from other FDHs both in terms of primary structure and catalytic properties. A distinctive feature of SauFDH is the highest (about 2.5–3 times) specific activity compared to other formate dehydrogenases. At the same time, SauFDH has high Michaelis constants for both substrates. Based on the analysis of three-dimensional structures and the alignment of amino acid sequences, replacements promising in terms of changing catalytic parameters were selected. The replacement of I220H resulted in an increase in \(K_{{\text{M}}}^{{{\text{NA}}{{{\text{D}}}^{{\text{ + }}}}}}\); the value of kcat has not changed. When T250H is replaced, an increase in \(K_{{\text{M}}}^{{{\text{NA}}{{{\text{D}}}^{{\text{ + }}}}}}\) is observed, kcat decreases from 20 to 13 s–1. The replacement of K368H led to a slight increase in \(K_{{\text{M}}}^{{{\text{NA}}{{{\text{D}}}^{{\text{ + }}}}}}\), kcat decreased from 20 to 6 s–1. The introduction of TGA and AGA additional inserts in α-helix at the C-terminus of the enzyme led to an increase in \(K_{{\text{M}}}^{{{\text{NA}}{{{\text{D}}}^{{\text{ + }}}}}}\) and \(K_{{\text{M}}}^{{{\text{HCO}}{{{\text{O}}}^{ - }}}}\). A bigger effect was observed for \(K_{{\text{M}}}^{{{\text{NA}}{{{\text{D}}}^{{\text{ + }}}}}}\)—the difference was more than 10 times. For mutant SauFDH with insertions kcat significantly reduced to 4 s–1. Similar results were observed for mutants with multipoint replacements. Thus, the C-terminal sequence has been shown to play an important role in the catalysis of SauFDH.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow University Chemistry Bulletin
Moscow University Chemistry Bulletin CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
1.30
自引率
14.30%
发文量
38
期刊介绍: Moscow University Chemistry Bulletin is a journal that publishes review articles, original research articles, and short communications on various areas of basic and applied research in chemistry, including medical chemistry and pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信