{"title":"一类具有寄主庇护和对寄主种群有强通道效应的寄主-拟寄主模式的行为","authors":"S. Kalabušić, E. Pilav","doi":"10.1142/s0218339023500274","DOIUrl":null,"url":null,"abstract":"This paper studies the dynamics of a class of host-parasitoid models with host refuge and the strong Allee effect upon the host population. Without the parasitoid population, the Beverton–Holt equation governs the host population. The general probability function describes the portion of the hosts that are safe from parasitism. The existence and local behavior of solutions around the equilibrium points are discussed. We conclude that the extinction equilibrium will always have its basin of attraction which implies that the addition of the host refuge will not save populations from extinction. By taking the host intrinsic growth rate as the bifurcation parameter, the existence of the Neimark–Sacker bifurcation can be shown. Finally, we present numerical simulations to support our theoretical findings.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE BEHAVIOR OF A CLASS HOST-PARASITOID MODELS WITH HOST REFUGE AND STRONG ALLEE EFFECT UPON THE HOST POPULATION\",\"authors\":\"S. Kalabušić, E. Pilav\",\"doi\":\"10.1142/s0218339023500274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the dynamics of a class of host-parasitoid models with host refuge and the strong Allee effect upon the host population. Without the parasitoid population, the Beverton–Holt equation governs the host population. The general probability function describes the portion of the hosts that are safe from parasitism. The existence and local behavior of solutions around the equilibrium points are discussed. We conclude that the extinction equilibrium will always have its basin of attraction which implies that the addition of the host refuge will not save populations from extinction. By taking the host intrinsic growth rate as the bifurcation parameter, the existence of the Neimark–Sacker bifurcation can be shown. Finally, we present numerical simulations to support our theoretical findings.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218339023500274\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339023500274","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
THE BEHAVIOR OF A CLASS HOST-PARASITOID MODELS WITH HOST REFUGE AND STRONG ALLEE EFFECT UPON THE HOST POPULATION
This paper studies the dynamics of a class of host-parasitoid models with host refuge and the strong Allee effect upon the host population. Without the parasitoid population, the Beverton–Holt equation governs the host population. The general probability function describes the portion of the hosts that are safe from parasitism. The existence and local behavior of solutions around the equilibrium points are discussed. We conclude that the extinction equilibrium will always have its basin of attraction which implies that the addition of the host refuge will not save populations from extinction. By taking the host intrinsic growth rate as the bifurcation parameter, the existence of the Neimark–Sacker bifurcation can be shown. Finally, we present numerical simulations to support our theoretical findings.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.