科学课堂中计算思维的系统回顾

IF 4.7 2区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
A. Ogegbo, U. Ramnarain
{"title":"科学课堂中计算思维的系统回顾","authors":"A. Ogegbo, U. Ramnarain","doi":"10.1080/03057267.2021.1963580","DOIUrl":null,"url":null,"abstract":"ABSTRACT Computational thinking (CT) has been described as an essential skill that should be learned by everyone and can, therefore, be included in their skill set. Computational thinking uses essential principles in computer science for solving problems, understanding complex systems, and human behaviour. This way of thinking has significant consequences for teaching and learning science subjects at elementary and high school levels. In this review, we analyse and discuss the results from 23 studies and highlight the methodology, different strategies, and assessment practices used to promote the integration of computational thinking within science classrooms. We also give an overview of how computational thinking is being taught in science classrooms and describe tools available for teaching computational thinking in science instruction. Findings showed the value of using modelling-based pedagogy in incorporating key computational thinking skills within science instruction and suggests that educators should deploy effective technology tools to enhance the deductive and inductive teaching of science concepts using computational thinking framework.","PeriodicalId":49262,"journal":{"name":"Studies in Science Education","volume":"58 1","pages":"203 - 230"},"PeriodicalIF":4.7000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/03057267.2021.1963580","citationCount":"20","resultStr":"{\"title\":\"A systematic review of computational thinking in science classrooms\",\"authors\":\"A. Ogegbo, U. Ramnarain\",\"doi\":\"10.1080/03057267.2021.1963580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Computational thinking (CT) has been described as an essential skill that should be learned by everyone and can, therefore, be included in their skill set. Computational thinking uses essential principles in computer science for solving problems, understanding complex systems, and human behaviour. This way of thinking has significant consequences for teaching and learning science subjects at elementary and high school levels. In this review, we analyse and discuss the results from 23 studies and highlight the methodology, different strategies, and assessment practices used to promote the integration of computational thinking within science classrooms. We also give an overview of how computational thinking is being taught in science classrooms and describe tools available for teaching computational thinking in science instruction. Findings showed the value of using modelling-based pedagogy in incorporating key computational thinking skills within science instruction and suggests that educators should deploy effective technology tools to enhance the deductive and inductive teaching of science concepts using computational thinking framework.\",\"PeriodicalId\":49262,\"journal\":{\"name\":\"Studies in Science Education\",\"volume\":\"58 1\",\"pages\":\"203 - 230\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/03057267.2021.1963580\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Science Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1080/03057267.2021.1963580\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1080/03057267.2021.1963580","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 20

摘要

摘要计算思维(CT)被描述为一种基本技能,每个人都应该学习,因此可以纳入他们的技能集。计算思维使用计算机科学中的基本原理来解决问题、理解复杂系统和人类行为。这种思维方式对小学和高中的科学科目教学有着重要的影响。在这篇综述中,我们分析和讨论了23项研究的结果,并强调了用于促进科学课堂中计算思维整合的方法、不同策略和评估实践。我们还概述了计算思维是如何在科学课堂上教授的,并描述了在科学教学中教授计算思维的可用工具。研究结果表明,使用基于建模的教学法将关键的计算思维技能纳入科学教学的价值,并建议教育工作者应部署有效的技术工具,使用计算思维框架加强科学概念的演绎和归纳教学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic review of computational thinking in science classrooms
ABSTRACT Computational thinking (CT) has been described as an essential skill that should be learned by everyone and can, therefore, be included in their skill set. Computational thinking uses essential principles in computer science for solving problems, understanding complex systems, and human behaviour. This way of thinking has significant consequences for teaching and learning science subjects at elementary and high school levels. In this review, we analyse and discuss the results from 23 studies and highlight the methodology, different strategies, and assessment practices used to promote the integration of computational thinking within science classrooms. We also give an overview of how computational thinking is being taught in science classrooms and describe tools available for teaching computational thinking in science instruction. Findings showed the value of using modelling-based pedagogy in incorporating key computational thinking skills within science instruction and suggests that educators should deploy effective technology tools to enhance the deductive and inductive teaching of science concepts using computational thinking framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Science Education
Studies in Science Education EDUCATION, SCIENTIFIC DISCIPLINES-
CiteScore
15.30
自引率
2.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The central aim of Studies in Science Education is to publish review articles of the highest quality which provide analytical syntheses of research into key topics and issues in science education. In addressing this aim, the Editor and Editorial Advisory Board, are guided by a commitment to: maintaining and developing the highest standards of scholarship associated with the journal; publishing articles from as wide a range of authors as possible, in relation both to professional background and country of origin; publishing articles which serve both to consolidate and reflect upon existing fields of study and to promote new areas for research activity. Studies in Science Education will be of interest to all those involved in science education including: science education researchers, doctoral and masters students; science teachers at elementary, high school and university levels; science education policy makers; science education curriculum developers and text book writers. Articles featured in Studies in Science Education have been made available either following invitation from the Editor or through potential contributors offering pieces. Given the substantial nature of the review articles, the Editor is willing to give informal feedback on the suitability of proposals though all contributions, whether invited or not, are subject to full peer review. A limited number of books of special interest and concern to those involved in science education are normally reviewed in each volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信