A. Roberts, Katharine Aveni, Shalane R Basque, J. Orange, P. McLaughlin, J. Ramirez, A. Troyer, Stephanie Gutierrez, Angie Chen, R. Bartha, M. Binns, S. Black, L. Casaubon, D. Dowlatshahi, A. Hassan, D. Kwan, B. Levine, J. Mandzia, D. Sahlas, C. Scott, S. Strother, K. Sunderland, S. Symons, R. Swartz
{"title":"利用口语语篇生成预测脑血管病患者的认知障碍","authors":"A. Roberts, Katharine Aveni, Shalane R Basque, J. Orange, P. McLaughlin, J. Ramirez, A. Troyer, Stephanie Gutierrez, Angie Chen, R. Bartha, M. Binns, S. Black, L. Casaubon, D. Dowlatshahi, A. Hassan, D. Kwan, B. Levine, J. Mandzia, D. Sahlas, C. Scott, S. Strother, K. Sunderland, S. Symons, R. Swartz","doi":"10.1097/TLD.0000000000000242","DOIUrl":null,"url":null,"abstract":"Supplemental Digital Content is Available in the Text. Purpose: Dementia due to cerebrovascular disease (CVD) is common. Detecting early cognitive decline in CVD is critical because addressing risk factors may slow or prevent dementia. This study used a multidomain discourse analysis approach to determine the spoken language signature of CVD-related cognitive impairment. Method: Spoken language and neuropsychological assessment data were collected prospectively from 157 participants with CVD as part of the Ontario Neurodegenerative Disease Research Initiative, a longitudinal, observational study of neurodegenerative disease. Participants were categorized as impaired (n = 92) or cognitively normal for age (n = 65) based on neuropsychology criteria. Spoken language samples were transcribed orthographically and annotated for 13 discourse features, across five domains. Discriminant function analyses were used to determine a minimum set of discourse variables, and their estimated weights, for maximizing diagnostic group separation. Results: The optimal discriminant function that included 10 of 13 discourse measures correctly classified 78.3% of original cases (69.4% cross-validated cases) with a sensitivity of 77.2% and specificity of 80.0%. Conclusion: Spoken discourse appears to be a sensitive measure for detecting cognitive impairment in CVD with measures of productivity, information content, and information efficiency heavily weighted in the final algorithm.","PeriodicalId":51604,"journal":{"name":"Topics in Language Disorders","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting Cognitive Impairment in Cerebrovascular Disease Using Spoken Discourse Production\",\"authors\":\"A. Roberts, Katharine Aveni, Shalane R Basque, J. Orange, P. McLaughlin, J. Ramirez, A. Troyer, Stephanie Gutierrez, Angie Chen, R. Bartha, M. Binns, S. Black, L. Casaubon, D. Dowlatshahi, A. Hassan, D. Kwan, B. Levine, J. Mandzia, D. Sahlas, C. Scott, S. Strother, K. Sunderland, S. Symons, R. Swartz\",\"doi\":\"10.1097/TLD.0000000000000242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supplemental Digital Content is Available in the Text. Purpose: Dementia due to cerebrovascular disease (CVD) is common. Detecting early cognitive decline in CVD is critical because addressing risk factors may slow or prevent dementia. This study used a multidomain discourse analysis approach to determine the spoken language signature of CVD-related cognitive impairment. Method: Spoken language and neuropsychological assessment data were collected prospectively from 157 participants with CVD as part of the Ontario Neurodegenerative Disease Research Initiative, a longitudinal, observational study of neurodegenerative disease. Participants were categorized as impaired (n = 92) or cognitively normal for age (n = 65) based on neuropsychology criteria. Spoken language samples were transcribed orthographically and annotated for 13 discourse features, across five domains. Discriminant function analyses were used to determine a minimum set of discourse variables, and their estimated weights, for maximizing diagnostic group separation. Results: The optimal discriminant function that included 10 of 13 discourse measures correctly classified 78.3% of original cases (69.4% cross-validated cases) with a sensitivity of 77.2% and specificity of 80.0%. Conclusion: Spoken discourse appears to be a sensitive measure for detecting cognitive impairment in CVD with measures of productivity, information content, and information efficiency heavily weighted in the final algorithm.\",\"PeriodicalId\":51604,\"journal\":{\"name\":\"Topics in Language Disorders\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Language Disorders\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/TLD.0000000000000242\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Language Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/TLD.0000000000000242","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LINGUISTICS","Score":null,"Total":0}
Predicting Cognitive Impairment in Cerebrovascular Disease Using Spoken Discourse Production
Supplemental Digital Content is Available in the Text. Purpose: Dementia due to cerebrovascular disease (CVD) is common. Detecting early cognitive decline in CVD is critical because addressing risk factors may slow or prevent dementia. This study used a multidomain discourse analysis approach to determine the spoken language signature of CVD-related cognitive impairment. Method: Spoken language and neuropsychological assessment data were collected prospectively from 157 participants with CVD as part of the Ontario Neurodegenerative Disease Research Initiative, a longitudinal, observational study of neurodegenerative disease. Participants were categorized as impaired (n = 92) or cognitively normal for age (n = 65) based on neuropsychology criteria. Spoken language samples were transcribed orthographically and annotated for 13 discourse features, across five domains. Discriminant function analyses were used to determine a minimum set of discourse variables, and their estimated weights, for maximizing diagnostic group separation. Results: The optimal discriminant function that included 10 of 13 discourse measures correctly classified 78.3% of original cases (69.4% cross-validated cases) with a sensitivity of 77.2% and specificity of 80.0%. Conclusion: Spoken discourse appears to be a sensitive measure for detecting cognitive impairment in CVD with measures of productivity, information content, and information efficiency heavily weighted in the final algorithm.
期刊介绍:
Topics in Language Disorders (TLD) is a double-blind peer-reviewed topical journal that has dual purposes: (1) to serve as a scholarly resource for researchers and clinicians who share an interest in spoken and written language development and disorders across the lifespan, with a focus on interdisciplinary and international concerns; and (2) to provide relevant information to support theoretically sound, culturally sensitive, research-based clinical practices.