求解非lipschitzian伪单调变分不等式的一种新的自适应步长提取法

IF 1.4 4区 数学 Q1 MATHEMATICS
Duong Viet Thong
{"title":"求解非lipschitzian伪单调变分不等式的一种新的自适应步长提取法","authors":"Duong Viet Thong","doi":"10.37193/cjm.2022.02.19","DOIUrl":null,"url":null,"abstract":"\"The purpose of this work is to develop a new version of the extragradient method for solving non-Lipschitzian and pseudo-monotone variational inequalities in real Hilbert spaces. First, we prove a sufficient condition for weak convergence of a proposed algorithm under relaxed assumptions. Next, under strong pseudomonotonicity and Lipschitz continuity assumptions, we obtain also a Q-linear convergence rate of this algorithm. Our results improve some recent contributions in the literature on the extragradient method.\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"Extragradient method with a new adaptive step size for solving non-Lipschitzian pseudo-monotone variational inequalities\\\"\",\"authors\":\"Duong Viet Thong\",\"doi\":\"10.37193/cjm.2022.02.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"The purpose of this work is to develop a new version of the extragradient method for solving non-Lipschitzian and pseudo-monotone variational inequalities in real Hilbert spaces. First, we prove a sufficient condition for weak convergence of a proposed algorithm under relaxed assumptions. Next, under strong pseudomonotonicity and Lipschitz continuity assumptions, we obtain also a Q-linear convergence rate of this algorithm. Our results improve some recent contributions in the literature on the extragradient method.\\\"\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2022.02.19\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.02.19","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

“本工作的目的是发展一种新的外梯度方法来求解实Hilbert空间中的非Lipschitz和伪单调变分不等式。首先,我们证明了所提出的算法在松弛假设下弱收敛的一个充分条件。其次,在强伪单调性和Lipschitz-连续性假设下,我们还得到了一个Q线性凸算子该算法的收敛率。我们的结果改进了文献中关于超梯度方法的一些最新贡献。“
本文章由计算机程序翻译,如有差异,请以英文原文为准。
"Extragradient method with a new adaptive step size for solving non-Lipschitzian pseudo-monotone variational inequalities"
"The purpose of this work is to develop a new version of the extragradient method for solving non-Lipschitzian and pseudo-monotone variational inequalities in real Hilbert spaces. First, we prove a sufficient condition for weak convergence of a proposed algorithm under relaxed assumptions. Next, under strong pseudomonotonicity and Lipschitz continuity assumptions, we obtain also a Q-linear convergence rate of this algorithm. Our results improve some recent contributions in the literature on the extragradient method."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信