奥氏体不锈钢应力松弛开裂敏感性的比较

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
H. Lee, Bumcho Kim, Sun-Ig Hong
{"title":"奥氏体不锈钢应力松弛开裂敏感性的比较","authors":"H. Lee, Bumcho Kim, Sun-Ig Hong","doi":"10.29391/2022.101.017","DOIUrl":null,"url":null,"abstract":"Coal-fired power plants often have welded joints made up of 347H stainless steel. However, this alloy is known to fail because of stress relaxation cracking. Thus, quantitative evaluation methods are needed as screening measures. In this study, a Gleeble® thermomechanical simulator was implemented in 347H and Super 304H alloy heat-affected zone (HAZ) simulation and stress relaxation testing. In the case of 347H, carbide dissolution in the HAZ reduced the hardness value and promoted grain growth. Alternatively, the respective extent of precipitate dissolution and hardness reduction in the nitrogen-containing Super 304H was relatively small. The stress relaxation tests were performed at a temperature of 700°C (1292°F), which was maintained for up to 70 h. Consequently, all 347H specimens fractured within 32 h. Furthermore, the time to rupture substantially decreased as the strain was increased from 5 to 10% and then to 15%. Additionally, the hardness near the fractured surface increased, and the plastic deformation primarily occurred near the grain boundaries. Conversely, the Super 304H specimens did not fracture during the 70-h testing period, at which time their hardness distribution was observed to still be relatively uniform. These results demonstrate that the susceptibility of stress relaxation cracking can be quantitatively determined according to the material and strain.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Stress Relaxation Cracking Susceptibility of Austenitic Stainless Steels\",\"authors\":\"H. Lee, Bumcho Kim, Sun-Ig Hong\",\"doi\":\"10.29391/2022.101.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coal-fired power plants often have welded joints made up of 347H stainless steel. However, this alloy is known to fail because of stress relaxation cracking. Thus, quantitative evaluation methods are needed as screening measures. In this study, a Gleeble® thermomechanical simulator was implemented in 347H and Super 304H alloy heat-affected zone (HAZ) simulation and stress relaxation testing. In the case of 347H, carbide dissolution in the HAZ reduced the hardness value and promoted grain growth. Alternatively, the respective extent of precipitate dissolution and hardness reduction in the nitrogen-containing Super 304H was relatively small. The stress relaxation tests were performed at a temperature of 700°C (1292°F), which was maintained for up to 70 h. Consequently, all 347H specimens fractured within 32 h. Furthermore, the time to rupture substantially decreased as the strain was increased from 5 to 10% and then to 15%. Additionally, the hardness near the fractured surface increased, and the plastic deformation primarily occurred near the grain boundaries. Conversely, the Super 304H specimens did not fracture during the 70-h testing period, at which time their hardness distribution was observed to still be relatively uniform. These results demonstrate that the susceptibility of stress relaxation cracking can be quantitatively determined according to the material and strain.\",\"PeriodicalId\":23681,\"journal\":{\"name\":\"Welding Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.29391/2022.101.017\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2022.101.017","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

燃煤发电厂通常采用347H不锈钢制成的焊接接头。然而,已知这种合金由于应力松弛开裂而失效。因此,需要定量评估方法作为筛选措施。在本研究中,Gleeble®热机械模拟器用于347H和Super 304H合金热影响区(HAZ)模拟和应力松弛测试。在347H的情况下,HAZ中的碳化物溶解降低了硬度值并促进了晶粒生长。或者,含氮Super 304H中的沉淀物溶解和硬度降低的程度相对较小。应力松弛试验在700°C(1292°F)的温度下进行,温度保持长达70小时。因此,所有347H试样在32小时内断裂。此外,随着应变从5%增加到10%,然后增加到15%,断裂时间显著缩短。此外,断裂表面附近的硬度增加,塑性变形主要发生在晶界附近。相反,Super 304H试样在70小时的试验期间没有断裂,此时观察到其硬度分布仍然相对均匀。这些结果表明,应力松弛裂纹的敏感性可以根据材料和应变进行定量测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Stress Relaxation Cracking Susceptibility of Austenitic Stainless Steels
Coal-fired power plants often have welded joints made up of 347H stainless steel. However, this alloy is known to fail because of stress relaxation cracking. Thus, quantitative evaluation methods are needed as screening measures. In this study, a Gleeble® thermomechanical simulator was implemented in 347H and Super 304H alloy heat-affected zone (HAZ) simulation and stress relaxation testing. In the case of 347H, carbide dissolution in the HAZ reduced the hardness value and promoted grain growth. Alternatively, the respective extent of precipitate dissolution and hardness reduction in the nitrogen-containing Super 304H was relatively small. The stress relaxation tests were performed at a temperature of 700°C (1292°F), which was maintained for up to 70 h. Consequently, all 347H specimens fractured within 32 h. Furthermore, the time to rupture substantially decreased as the strain was increased from 5 to 10% and then to 15%. Additionally, the hardness near the fractured surface increased, and the plastic deformation primarily occurred near the grain boundaries. Conversely, the Super 304H specimens did not fracture during the 70-h testing period, at which time their hardness distribution was observed to still be relatively uniform. These results demonstrate that the susceptibility of stress relaxation cracking can be quantitatively determined according to the material and strain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信