浆果加工中应用人工智能的先进检测技术

IF 5.3 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Dayuan Wang, Min Zhang, Arun S. Mujumdar, Dongxing Yu
{"title":"浆果加工中应用人工智能的先进检测技术","authors":"Dayuan Wang,&nbsp;Min Zhang,&nbsp;Arun S. Mujumdar,&nbsp;Dongxing Yu","doi":"10.1007/s12393-021-09298-5","DOIUrl":null,"url":null,"abstract":"<div><p>Berries are delicious and nutritious, making them among the popular fruits. There are various types of berries, the most common ones include blueberries, strawberries, raspberries, blackberries, grapes, and currants<i>.</i> Fresh berries combine high nutritional value and perishability. The processing of berries ensures high quality and enhanced marketability of the product. Sorting, disinfection, and decontamination are essential processes that many types of fruits such as citrus fruits, berries, pomes, and drupes must undergo to ensure improved quality, uniformity, and microbiological safety of the product. Drying and freezing are excellent processing methods to extend the shelf life of berries which also provide new options to the consumer of a wide variety of berries. With the demand for high quality and automatic high-throughput detection of the quality of fruit products, intelligent and rapid detection of various parameters during processing has become the development direction of modern food processing. Therefore, this paper reviews the application of advanced detection technologies, artificial intelligence-based methods for detection and prediction during berry sorting, drying, disinfecting, sterilizing, and freezing processing. These advanced detection techniques include computer vision system, near infrared, hyperspectral imaging, thermal imaging, low-field nuclear magnetic resonance, magnetic resonance imaging, electronic nose, and X-ray computed tomography. These artificial intelligence methods include mathematical modeling, chemometrics, machine learning, deep learning, and artificial neural networks. In general, advanced detection techniques incorporating artificial intelligence have not yet penetrated into all aspects of commercial berry processing, which include drying, disinfecting, sterilizing, and freezing processes.</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"14 1","pages":"176 - 199"},"PeriodicalIF":5.3000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12393-021-09298-5.pdf","citationCount":"14","resultStr":"{\"title\":\"Advanced Detection Techniques Using Artificial Intelligence in Processing of Berries\",\"authors\":\"Dayuan Wang,&nbsp;Min Zhang,&nbsp;Arun S. Mujumdar,&nbsp;Dongxing Yu\",\"doi\":\"10.1007/s12393-021-09298-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Berries are delicious and nutritious, making them among the popular fruits. There are various types of berries, the most common ones include blueberries, strawberries, raspberries, blackberries, grapes, and currants<i>.</i> Fresh berries combine high nutritional value and perishability. The processing of berries ensures high quality and enhanced marketability of the product. Sorting, disinfection, and decontamination are essential processes that many types of fruits such as citrus fruits, berries, pomes, and drupes must undergo to ensure improved quality, uniformity, and microbiological safety of the product. Drying and freezing are excellent processing methods to extend the shelf life of berries which also provide new options to the consumer of a wide variety of berries. With the demand for high quality and automatic high-throughput detection of the quality of fruit products, intelligent and rapid detection of various parameters during processing has become the development direction of modern food processing. Therefore, this paper reviews the application of advanced detection technologies, artificial intelligence-based methods for detection and prediction during berry sorting, drying, disinfecting, sterilizing, and freezing processing. These advanced detection techniques include computer vision system, near infrared, hyperspectral imaging, thermal imaging, low-field nuclear magnetic resonance, magnetic resonance imaging, electronic nose, and X-ray computed tomography. These artificial intelligence methods include mathematical modeling, chemometrics, machine learning, deep learning, and artificial neural networks. In general, advanced detection techniques incorporating artificial intelligence have not yet penetrated into all aspects of commercial berry processing, which include drying, disinfecting, sterilizing, and freezing processes.</p></div>\",\"PeriodicalId\":565,\"journal\":{\"name\":\"Food Engineering Reviews\",\"volume\":\"14 1\",\"pages\":\"176 - 199\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2021-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12393-021-09298-5.pdf\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Engineering Reviews\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12393-021-09298-5\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12393-021-09298-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 14

摘要

浆果既美味又营养,是最受欢迎的水果之一。浆果有很多种,最常见的有蓝莓、草莓、覆盆子、黑莓、葡萄和醋栗。新鲜浆果营养价值高,易腐烂。浆果的加工确保了产品的高质量和提高了产品的适销性。分拣、消毒和去污染是许多类型的水果(如柑橘类水果、浆果、果荚和核果)必须经历的基本过程,以确保产品的质量、均匀性和微生物安全性。干燥和冷冻是延长浆果保质期的优良加工方法,也为各种浆果的消费者提供了新的选择。随着人们对水果产品质量高质量、自动高通量检测的需求,加工过程中各种参数的智能化、快速检测已成为现代食品加工的发展方向。因此,本文综述了先进的检测技术和基于人工智能的方法在浆果分选、干燥、消毒、灭菌和冷冻加工过程中的检测和预测应用。这些先进的检测技术包括计算机视觉系统、近红外、高光谱成像、热成像、低场核磁共振、磁共振成像、电子鼻和x射线计算机断层扫描。这些人工智能方法包括数学建模、化学计量学、机器学习、深度学习和人工神经网络。总的来说,结合人工智能的先进检测技术尚未渗透到商业浆果加工的各个方面,包括干燥、消毒、灭菌和冷冻过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Detection Techniques Using Artificial Intelligence in Processing of Berries

Berries are delicious and nutritious, making them among the popular fruits. There are various types of berries, the most common ones include blueberries, strawberries, raspberries, blackberries, grapes, and currants. Fresh berries combine high nutritional value and perishability. The processing of berries ensures high quality and enhanced marketability of the product. Sorting, disinfection, and decontamination are essential processes that many types of fruits such as citrus fruits, berries, pomes, and drupes must undergo to ensure improved quality, uniformity, and microbiological safety of the product. Drying and freezing are excellent processing methods to extend the shelf life of berries which also provide new options to the consumer of a wide variety of berries. With the demand for high quality and automatic high-throughput detection of the quality of fruit products, intelligent and rapid detection of various parameters during processing has become the development direction of modern food processing. Therefore, this paper reviews the application of advanced detection technologies, artificial intelligence-based methods for detection and prediction during berry sorting, drying, disinfecting, sterilizing, and freezing processing. These advanced detection techniques include computer vision system, near infrared, hyperspectral imaging, thermal imaging, low-field nuclear magnetic resonance, magnetic resonance imaging, electronic nose, and X-ray computed tomography. These artificial intelligence methods include mathematical modeling, chemometrics, machine learning, deep learning, and artificial neural networks. In general, advanced detection techniques incorporating artificial intelligence have not yet penetrated into all aspects of commercial berry processing, which include drying, disinfecting, sterilizing, and freezing processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Engineering Reviews
Food Engineering Reviews FOOD SCIENCE & TECHNOLOGY-
CiteScore
14.20
自引率
1.50%
发文量
27
审稿时长
>12 weeks
期刊介绍: Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信