Dan Liu, Wei Jiang, B. Cai, O. Heirich, J. Wang, W. Shangguan
{"title":"基于先进地图匹配测量增强GNSS/INS与误差状态UKF的鲁棒列车定位方法","authors":"Dan Liu, Wei Jiang, B. Cai, O. Heirich, J. Wang, W. Shangguan","doi":"10.1017/S0373463323000097","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a robust train localisation system by fusing a Global Navigation Satellite System (GNSS) with an Inertial Navigation System (INS) in a tightly-coupled (TC) strategy. To improve navigation performance in GNSS partly blocked areas, an advanced map-matching (MM) measurement-augmented TC GNSS/INS method is proposed via an error-state unscented Kalman filter (UKF). The advanced MM generates a matched position using a one-step predicted position from a UKF time update step with binary search algorithm and a point–line projection algorithm. The matched position inputs as an additional measurement to fuse with the INS position to augment the degraded GNSS pseudorange measurement to optimise the state estimation in the UKF measurement update step. Both the real train test on the Qinghai–Tibet railway and the simulation were carried out and the results confirm that the proposed advanced MM measurement-augmented TC GNSS/INS with error-state UKF provides the best horizontal positioning accuracy of 0 ⋅ 67 m, which performs an improvement of about 71% and 90% with respect to TC GNSS/INS with only error-state UKF and only error-state Extended Kalman filter in GNSS partly blocked areas.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust train localisation method based on advanced map matching measurement-augmented tightly-coupled GNSS/INS with error-state UKF\",\"authors\":\"Dan Liu, Wei Jiang, B. Cai, O. Heirich, J. Wang, W. Shangguan\",\"doi\":\"10.1017/S0373463323000097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a robust train localisation system by fusing a Global Navigation Satellite System (GNSS) with an Inertial Navigation System (INS) in a tightly-coupled (TC) strategy. To improve navigation performance in GNSS partly blocked areas, an advanced map-matching (MM) measurement-augmented TC GNSS/INS method is proposed via an error-state unscented Kalman filter (UKF). The advanced MM generates a matched position using a one-step predicted position from a UKF time update step with binary search algorithm and a point–line projection algorithm. The matched position inputs as an additional measurement to fuse with the INS position to augment the degraded GNSS pseudorange measurement to optimise the state estimation in the UKF measurement update step. Both the real train test on the Qinghai–Tibet railway and the simulation were carried out and the results confirm that the proposed advanced MM measurement-augmented TC GNSS/INS with error-state UKF provides the best horizontal positioning accuracy of 0 ⋅ 67 m, which performs an improvement of about 71% and 90% with respect to TC GNSS/INS with only error-state UKF and only error-state Extended Kalman filter in GNSS partly blocked areas.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0373463323000097\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463323000097","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Robust train localisation method based on advanced map matching measurement-augmented tightly-coupled GNSS/INS with error-state UKF
Abstract This paper presents a robust train localisation system by fusing a Global Navigation Satellite System (GNSS) with an Inertial Navigation System (INS) in a tightly-coupled (TC) strategy. To improve navigation performance in GNSS partly blocked areas, an advanced map-matching (MM) measurement-augmented TC GNSS/INS method is proposed via an error-state unscented Kalman filter (UKF). The advanced MM generates a matched position using a one-step predicted position from a UKF time update step with binary search algorithm and a point–line projection algorithm. The matched position inputs as an additional measurement to fuse with the INS position to augment the degraded GNSS pseudorange measurement to optimise the state estimation in the UKF measurement update step. Both the real train test on the Qinghai–Tibet railway and the simulation were carried out and the results confirm that the proposed advanced MM measurement-augmented TC GNSS/INS with error-state UKF provides the best horizontal positioning accuracy of 0 ⋅ 67 m, which performs an improvement of about 71% and 90% with respect to TC GNSS/INS with only error-state UKF and only error-state Extended Kalman filter in GNSS partly blocked areas.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.