溶解度限制对交通尾气中SOA颗粒吸湿生长和云滴活化的影响

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES
C. Wittbom, A. C. Eriksson, J. Rissler, P. Roldin, E. Z. Nordin, S. Sjogren, P. T. Nilsson, E. Swietlicki, J. Pagels, B. Svenningsson
{"title":"溶解度限制对交通尾气中SOA颗粒吸湿生长和云滴活化的影响","authors":"C. Wittbom,&nbsp;A. C. Eriksson,&nbsp;J. Rissler,&nbsp;P. Roldin,&nbsp;E. Z. Nordin,&nbsp;S. Sjogren,&nbsp;P. T. Nilsson,&nbsp;E. Swietlicki,&nbsp;J. Pagels,&nbsp;B. Svenningsson","doi":"10.1007/s10874-018-9380-5","DOIUrl":null,"url":null,"abstract":"<p>Hygroscopicity measurements of secondary organic aerosol (SOA) particles often show inconsistent results between the supersaturated and subsaturated regimes, with higher activity as cloud condensation nucleus (CCN) than indicated by hygroscopic growth. In this study, we have investigated the discrepancy between the two regimes in the Lund University (LU) smog chamber. Various anthropogenic SOA were produced from mixtures of different precursors: anthropogenic light aromatic precursors (toluene and <i>m</i>-xylene), exhaust from a diesel passenger vehicle spiked with the light aromatic precursors, and exhaust from two different gasoline-powered passenger vehicles. Three types of seed particles were used: soot aggregates from a diesel vehicle, soot aggregates from a flame soot generator and ammonium sulphate (AS) particles. The hygroscopicity of seed particles with condensed, photochemically produced, anthropogenic SOA was investigated with respect to critical supersaturation (<i>s</i><sub><i>c</i></sub>) and hygroscopic growth factor (<i>gf</i>) at 90% relative humidity. The hygroscopicity parameter <i>κ</i> was calculated for the two regimes: <i>κ</i><sub><i>sc</i></sub> and <i>κ</i><sub><i>gf</i></sub>, from measurements of <i>s</i><sub><i>c</i></sub> and <i>gf</i>, respectively. The two <i>κ</i> showed significant discrepancies, with a <i>κ</i><sub><i>gf</i></sub> /<i>κ</i><sub><i>sc</i></sub> ratio closest to one for the gasoline experiments with ammonium sulphate seed and lower for the soot seed experiments. Empirical observations of <i>s</i><sub><i>c</i></sub> and <i>gf</i> were compared to theoretical predictions, using modified K?hler theory where water solubility limitations were taken into account. The results indicate that the inconsistency between measurements in the subsaturated and supersaturated regimes may be explained by part of the organic material in the particles produced from anthropogenic precursors having a limited solubility in water.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"75 4","pages":"359 - 383"},"PeriodicalIF":3.0000,"publicationDate":"2018-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-018-9380-5","citationCount":"6","resultStr":"{\"title\":\"Effect of solubility limitation on hygroscopic growth and cloud drop activation of SOA particles produced from traffic exhausts\",\"authors\":\"C. Wittbom,&nbsp;A. C. Eriksson,&nbsp;J. Rissler,&nbsp;P. Roldin,&nbsp;E. Z. Nordin,&nbsp;S. Sjogren,&nbsp;P. T. Nilsson,&nbsp;E. Swietlicki,&nbsp;J. Pagels,&nbsp;B. Svenningsson\",\"doi\":\"10.1007/s10874-018-9380-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hygroscopicity measurements of secondary organic aerosol (SOA) particles often show inconsistent results between the supersaturated and subsaturated regimes, with higher activity as cloud condensation nucleus (CCN) than indicated by hygroscopic growth. In this study, we have investigated the discrepancy between the two regimes in the Lund University (LU) smog chamber. Various anthropogenic SOA were produced from mixtures of different precursors: anthropogenic light aromatic precursors (toluene and <i>m</i>-xylene), exhaust from a diesel passenger vehicle spiked with the light aromatic precursors, and exhaust from two different gasoline-powered passenger vehicles. Three types of seed particles were used: soot aggregates from a diesel vehicle, soot aggregates from a flame soot generator and ammonium sulphate (AS) particles. The hygroscopicity of seed particles with condensed, photochemically produced, anthropogenic SOA was investigated with respect to critical supersaturation (<i>s</i><sub><i>c</i></sub>) and hygroscopic growth factor (<i>gf</i>) at 90% relative humidity. The hygroscopicity parameter <i>κ</i> was calculated for the two regimes: <i>κ</i><sub><i>sc</i></sub> and <i>κ</i><sub><i>gf</i></sub>, from measurements of <i>s</i><sub><i>c</i></sub> and <i>gf</i>, respectively. The two <i>κ</i> showed significant discrepancies, with a <i>κ</i><sub><i>gf</i></sub> /<i>κ</i><sub><i>sc</i></sub> ratio closest to one for the gasoline experiments with ammonium sulphate seed and lower for the soot seed experiments. Empirical observations of <i>s</i><sub><i>c</i></sub> and <i>gf</i> were compared to theoretical predictions, using modified K?hler theory where water solubility limitations were taken into account. The results indicate that the inconsistency between measurements in the subsaturated and supersaturated regimes may be explained by part of the organic material in the particles produced from anthropogenic precursors having a limited solubility in water.</p>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"75 4\",\"pages\":\"359 - 383\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2018-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10874-018-9380-5\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-018-9380-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-018-9380-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 6

摘要

二次有机气溶胶(SOA)颗粒的吸湿性测量通常显示过饱和和亚饱和状态之间不一致的结果,作为云凝结核(CCN)的活性高于吸湿性生长所显示的活性。在这项研究中,我们调查了隆德大学(LU)烟雾室中两种制度之间的差异。各种人为的SOA是由不同前体的混合物产生的:人为的轻芳香族前体(甲苯和间二甲苯),一辆柴油乘用车的尾气中加入了轻芳香族前体,以及两辆不同的汽油动力乘用车的尾气。使用了三种类型的种子颗粒:柴油车的烟尘聚集体,火焰烟尘发生器的烟尘聚集体和硫酸铵(AS)颗粒。在相对湿度为90%的条件下,研究了光化学合成的压缩SOA种子颗粒的临界过饱和度(sc)和吸湿生长因子(gf)的吸湿性。分别根据sc和gf的测量值,计算了两种状态下的吸湿参数κ。两者的κ值差异显著,在含硫酸铵种子的汽油实验中,κgf /κsc的比值接近于1,而在烟灰种子实验中,κgf /κsc的比值较低。对sc和gf的经验观察与理论预测进行了比较,使用修正K?Hler理论中考虑了水溶性的限制。结果表明,亚饱和和过饱和状态下测量结果的不一致可能是由人为前体产生的颗粒中的部分有机物质在水中具有有限的溶解度造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of solubility limitation on hygroscopic growth and cloud drop activation of SOA particles produced from traffic exhausts

Effect of solubility limitation on hygroscopic growth and cloud drop activation of SOA particles produced from traffic exhausts

Hygroscopicity measurements of secondary organic aerosol (SOA) particles often show inconsistent results between the supersaturated and subsaturated regimes, with higher activity as cloud condensation nucleus (CCN) than indicated by hygroscopic growth. In this study, we have investigated the discrepancy between the two regimes in the Lund University (LU) smog chamber. Various anthropogenic SOA were produced from mixtures of different precursors: anthropogenic light aromatic precursors (toluene and m-xylene), exhaust from a diesel passenger vehicle spiked with the light aromatic precursors, and exhaust from two different gasoline-powered passenger vehicles. Three types of seed particles were used: soot aggregates from a diesel vehicle, soot aggregates from a flame soot generator and ammonium sulphate (AS) particles. The hygroscopicity of seed particles with condensed, photochemically produced, anthropogenic SOA was investigated with respect to critical supersaturation (sc) and hygroscopic growth factor (gf) at 90% relative humidity. The hygroscopicity parameter κ was calculated for the two regimes: κsc and κgf, from measurements of sc and gf, respectively. The two κ showed significant discrepancies, with a κgf /κsc ratio closest to one for the gasoline experiments with ammonium sulphate seed and lower for the soot seed experiments. Empirical observations of sc and gf were compared to theoretical predictions, using modified K?hler theory where water solubility limitations were taken into account. The results indicate that the inconsistency between measurements in the subsaturated and supersaturated regimes may be explained by part of the organic material in the particles produced from anthropogenic precursors having a limited solubility in water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信