单位对偶球上对应球指标曲线的两个直纹曲面的交

Yunus Öztemi̇r, M. Çalişkan
{"title":"单位对偶球上对应球指标曲线的两个直纹曲面的交","authors":"Yunus Öztemi̇r, M. Çalişkan","doi":"10.17776/csj.1197746","DOIUrl":null,"url":null,"abstract":"In this study, we first investigate the intersection of two different ruled surfaces in R^3 for two different tangential spherical indicatrix curves on DS^2 using the E. Study mapping. The conditions for the intersection of these ruled surfaces in R^3 are expressed by theorems with bivariate functions. Secondly, considering two different principal normal spherical indicatrix curves on DS^2, we examine the intersection of two different ruled surfaces in R^3 by using E. Study mapping. Similarly, the conditions for the intersection of these ruled surfaces in R^3 are indicated by theorems with bivariate functions. Thirdly, using E. Study mapping, we explore the intersection of two different ruled surfaces in R^3 by considering two different binormal spherical indicatrix curves on DS^2. Likewise, the conditions for the intersection of these ruled surfaces in R^3 are denoted by theorems with bivariate functions. Fourthly, considering two different pole spherical indicatrix curves on DS^2, we study the intersection of two different ruled surfaces in R^3 by using E. Study mapping. In the same way, the conditions for the intersection of these ruled surfaces in R^3 are specified by theorems with bivariate functions. Finally, we provide some examples that support the main results.","PeriodicalId":10906,"journal":{"name":"Cumhuriyet Science Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Intersection of Two Ruled Surfaces Corresponding to Spherical Indicatrix Curves on the Unit Dual Sphere\",\"authors\":\"Yunus Öztemi̇r, M. Çalişkan\",\"doi\":\"10.17776/csj.1197746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we first investigate the intersection of two different ruled surfaces in R^3 for two different tangential spherical indicatrix curves on DS^2 using the E. Study mapping. The conditions for the intersection of these ruled surfaces in R^3 are expressed by theorems with bivariate functions. Secondly, considering two different principal normal spherical indicatrix curves on DS^2, we examine the intersection of two different ruled surfaces in R^3 by using E. Study mapping. Similarly, the conditions for the intersection of these ruled surfaces in R^3 are indicated by theorems with bivariate functions. Thirdly, using E. Study mapping, we explore the intersection of two different ruled surfaces in R^3 by considering two different binormal spherical indicatrix curves on DS^2. Likewise, the conditions for the intersection of these ruled surfaces in R^3 are denoted by theorems with bivariate functions. Fourthly, considering two different pole spherical indicatrix curves on DS^2, we study the intersection of two different ruled surfaces in R^3 by using E. Study mapping. In the same way, the conditions for the intersection of these ruled surfaces in R^3 are specified by theorems with bivariate functions. Finally, we provide some examples that support the main results.\",\"PeriodicalId\":10906,\"journal\":{\"name\":\"Cumhuriyet Science Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cumhuriyet Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17776/csj.1197746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cumhuriyet Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17776/csj.1197746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们首先使用E.study映射研究了DS^2上两条不同切向球面指标曲线在R^3中两个不同直纹面的相交。这些规则曲面在R^3中相交的条件用二元函数定理表示。其次,考虑DS^2上两条不同的主法线球面指标曲线,我们用E.Study映射检验了R^3中两条不同直纹曲面的相交。类似地,这些规则曲面在R^3中相交的条件由具有二元函数的定理表示。第三,利用E.Study映射,我们通过考虑DS^2上两条不同的二正球面指标曲线,探索了R^3中两条不同直纹曲面的相交。同样,这些规则曲面在R^3中相交的条件由具有二元函数的定理表示。第四,考虑DS^2上两条不同极点的球面指标曲线,利用E.study映射研究了R^3中两条不同直纹曲面的相交。同样,这些规则曲面在R^3中相交的条件也由具有二元函数的定理指定。最后,我们提供了一些支持主要结果的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Intersection of Two Ruled Surfaces Corresponding to Spherical Indicatrix Curves on the Unit Dual Sphere
In this study, we first investigate the intersection of two different ruled surfaces in R^3 for two different tangential spherical indicatrix curves on DS^2 using the E. Study mapping. The conditions for the intersection of these ruled surfaces in R^3 are expressed by theorems with bivariate functions. Secondly, considering two different principal normal spherical indicatrix curves on DS^2, we examine the intersection of two different ruled surfaces in R^3 by using E. Study mapping. Similarly, the conditions for the intersection of these ruled surfaces in R^3 are indicated by theorems with bivariate functions. Thirdly, using E. Study mapping, we explore the intersection of two different ruled surfaces in R^3 by considering two different binormal spherical indicatrix curves on DS^2. Likewise, the conditions for the intersection of these ruled surfaces in R^3 are denoted by theorems with bivariate functions. Fourthly, considering two different pole spherical indicatrix curves on DS^2, we study the intersection of two different ruled surfaces in R^3 by using E. Study mapping. In the same way, the conditions for the intersection of these ruled surfaces in R^3 are specified by theorems with bivariate functions. Finally, we provide some examples that support the main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
51
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信