{"title":"三维切片超分辨率网:一种基于切片向上和切片重建的三维超分辨率快速少拍学习模型","authors":"Hongbin Lin, Qingfeng Xu, Handing Xu, Yanjie Xu, Yiming Zheng, Yubin Zhong, Zhenguo Nie","doi":"10.1115/1.4063275","DOIUrl":null,"url":null,"abstract":"\n A 3D model is a storage method that can accurately describe the objective world. However, the establishment of a 3D model requires a lot of acquisition resources in details, and a precise 3D model often consumes abundant storage space. To eliminate these drawback, we propose a 3D data super-resolution model named three dimension slice reconstruction model(3DSR) that use low resolution 3D data as input to acquire a high resolution result instantaneously and accurately, shortening time and storage when building a precise 3D model. To boost the efficiency and accuracy of deep learning model, the 3D data is split as multiple slices. The 3DSR processes the slice to high resolution 2D image, and reconstruct the image as high resolution 3D data. 3D data slice-up method and slice-reconstruction method are designed to maintain the main features of 3D data. Meanwhile, a pre-trained deep 2D convolution neural network is utilized to expand the resolution of 2D image, which achieve superior performance. Our method saving the time to train deep learning model and computation time when improve the resolution. Furthermore, our model can achieve better performance even less data is utilized to train the model.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-Slice-Super-Resolution-Net: A Fast Few Shooting Learning Model for 3D Super-resolution Using Slice-up and Slice-reconstruction\",\"authors\":\"Hongbin Lin, Qingfeng Xu, Handing Xu, Yanjie Xu, Yiming Zheng, Yubin Zhong, Zhenguo Nie\",\"doi\":\"10.1115/1.4063275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A 3D model is a storage method that can accurately describe the objective world. However, the establishment of a 3D model requires a lot of acquisition resources in details, and a precise 3D model often consumes abundant storage space. To eliminate these drawback, we propose a 3D data super-resolution model named three dimension slice reconstruction model(3DSR) that use low resolution 3D data as input to acquire a high resolution result instantaneously and accurately, shortening time and storage when building a precise 3D model. To boost the efficiency and accuracy of deep learning model, the 3D data is split as multiple slices. The 3DSR processes the slice to high resolution 2D image, and reconstruct the image as high resolution 3D data. 3D data slice-up method and slice-reconstruction method are designed to maintain the main features of 3D data. Meanwhile, a pre-trained deep 2D convolution neural network is utilized to expand the resolution of 2D image, which achieve superior performance. Our method saving the time to train deep learning model and computation time when improve the resolution. Furthermore, our model can achieve better performance even less data is utilized to train the model.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063275\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063275","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
3D-Slice-Super-Resolution-Net: A Fast Few Shooting Learning Model for 3D Super-resolution Using Slice-up and Slice-reconstruction
A 3D model is a storage method that can accurately describe the objective world. However, the establishment of a 3D model requires a lot of acquisition resources in details, and a precise 3D model often consumes abundant storage space. To eliminate these drawback, we propose a 3D data super-resolution model named three dimension slice reconstruction model(3DSR) that use low resolution 3D data as input to acquire a high resolution result instantaneously and accurately, shortening time and storage when building a precise 3D model. To boost the efficiency and accuracy of deep learning model, the 3D data is split as multiple slices. The 3DSR processes the slice to high resolution 2D image, and reconstruct the image as high resolution 3D data. 3D data slice-up method and slice-reconstruction method are designed to maintain the main features of 3D data. Meanwhile, a pre-trained deep 2D convolution neural network is utilized to expand the resolution of 2D image, which achieve superior performance. Our method saving the time to train deep learning model and computation time when improve the resolution. Furthermore, our model can achieve better performance even less data is utilized to train the model.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping