Sobolev型分数阶随机Volterra—Fredholm积分微分系统的最优控制结果 ∈ (1, 2) 通过行业运营商

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
M. Johnson, V. Vijayakumar
{"title":"Sobolev型分数阶随机Volterra—Fredholm积分微分系统的最优控制结果 ∈ (1, 2) 通过行业运营商","authors":"M. Johnson, V. Vijayakumar","doi":"10.1080/01630563.2023.2180645","DOIUrl":null,"url":null,"abstract":"Abstract The objective of this paper is to investigate the optimal control results for Sobolev-type fractional stochastic Volterra-Fredholm integrodifferential systems of order with sectorial operators in Hilbert spaces. Initially, we prove the existence of mild solutions by using fractional calculus, stochastic analysis theory, and the Schauder’s fixed point theorem. Next, we demonstrate the existence of optimal control pairs for the given system. Finally, an example is included to show the applications of the developed theory.","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"44 1","pages":"439 - 460"},"PeriodicalIF":1.4000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimal Control Results for Sobolev-Type Fractional Stochastic Volterra-Fredholm Integrodifferential Systems of Order ϑ ∈ (1, 2) via Sectorial Operators\",\"authors\":\"M. Johnson, V. Vijayakumar\",\"doi\":\"10.1080/01630563.2023.2180645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The objective of this paper is to investigate the optimal control results for Sobolev-type fractional stochastic Volterra-Fredholm integrodifferential systems of order with sectorial operators in Hilbert spaces. Initially, we prove the existence of mild solutions by using fractional calculus, stochastic analysis theory, and the Schauder’s fixed point theorem. Next, we demonstrate the existence of optimal control pairs for the given system. Finally, an example is included to show the applications of the developed theory.\",\"PeriodicalId\":54707,\"journal\":{\"name\":\"Numerical Functional Analysis and Optimization\",\"volume\":\"44 1\",\"pages\":\"439 - 460\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Functional Analysis and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/01630563.2023.2180645\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Functional Analysis and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2180645","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

摘要本文的目的是研究Hilbert空间中具有扇形算子的Sobolev型分数阶随机Volterra—Fredholm积分微分系统的最优控制结果。首先,我们利用分数微积分、随机分析理论和Schauder不动点定理证明了温和解的存在性。接下来,我们证明了给定系统的最优控制对的存在性。最后,通过算例说明了该理论的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Control Results for Sobolev-Type Fractional Stochastic Volterra-Fredholm Integrodifferential Systems of Order ϑ ∈ (1, 2) via Sectorial Operators
Abstract The objective of this paper is to investigate the optimal control results for Sobolev-type fractional stochastic Volterra-Fredholm integrodifferential systems of order with sectorial operators in Hilbert spaces. Initially, we prove the existence of mild solutions by using fractional calculus, stochastic analysis theory, and the Schauder’s fixed point theorem. Next, we demonstrate the existence of optimal control pairs for the given system. Finally, an example is included to show the applications of the developed theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
74
审稿时长
6-12 weeks
期刊介绍: Numerical Functional Analysis and Optimization is a journal aimed at development and applications of functional analysis and operator-theoretic methods in numerical analysis, optimization and approximation theory, control theory, signal and image processing, inverse and ill-posed problems, applied and computational harmonic analysis, operator equations, and nonlinear functional analysis. Not all high-quality papers within the union of these fields are within the scope of NFAO. Generalizations and abstractions that significantly advance their fields and reinforce the concrete by providing new insight and important results for problems arising from applications are welcome. On the other hand, technical generalizations for their own sake with window dressing about applications, or variants of known results and algorithms, are not suitable for this journal. Numerical Functional Analysis and Optimization publishes about 70 papers per year. It is our current policy to limit consideration to one submitted paper by any author/co-author per two consecutive years. Exception will be made for seminal papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信