Z. Deng, Xing Huang, C. Wei, Xingbin Li, Min-ting Li, Xing-ling Luo
{"title":"喜马拉雅盐的高温熔融特性及其提纯","authors":"Z. Deng, Xing Huang, C. Wei, Xingbin Li, Min-ting Li, Xing-ling Luo","doi":"10.1515/htmp-2022-0274","DOIUrl":null,"url":null,"abstract":"Abstract Himalayan rock salt contains a variety of minerals and trace elements, which is conducive to human health. The solutions of black rock salt and rose salt are alkaline, and the content of water insoluble matter is 0.34 and 0.083%, respectively. The element composition of water insoluble matter in rock salt is determined and analyzed. It is found that the main component of two kinds of rock salt water insoluble matter is soil. Due to the presence of water insoluble matter in rock salt, according to the different specific gravity of molten sodium chloride and insoluble matter, rock salt was purified by high-temperature melting method. Rose salt is mainly studied during purification. The results showed that the content of insoluble matter in rose salt decreased from 0.083 to 0.0024% after holding at 950°C for 40 min; the contents of arsenic, barium, and lead decreased to 0.0032, 0.61, and 0.21 mg·kg−1, respectively; the content of sodium increased to 39.24%, the contents of calcium, magnesium, and iron reached to 2,200, 855, and 1.31 mg·kg−1, respectively.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics and purification of Himalayan salt by high temperature melting\",\"authors\":\"Z. Deng, Xing Huang, C. Wei, Xingbin Li, Min-ting Li, Xing-ling Luo\",\"doi\":\"10.1515/htmp-2022-0274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Himalayan rock salt contains a variety of minerals and trace elements, which is conducive to human health. The solutions of black rock salt and rose salt are alkaline, and the content of water insoluble matter is 0.34 and 0.083%, respectively. The element composition of water insoluble matter in rock salt is determined and analyzed. It is found that the main component of two kinds of rock salt water insoluble matter is soil. Due to the presence of water insoluble matter in rock salt, according to the different specific gravity of molten sodium chloride and insoluble matter, rock salt was purified by high-temperature melting method. Rose salt is mainly studied during purification. The results showed that the content of insoluble matter in rose salt decreased from 0.083 to 0.0024% after holding at 950°C for 40 min; the contents of arsenic, barium, and lead decreased to 0.0032, 0.61, and 0.21 mg·kg−1, respectively; the content of sodium increased to 39.24%, the contents of calcium, magnesium, and iron reached to 2,200, 855, and 1.31 mg·kg−1, respectively.\",\"PeriodicalId\":12966,\"journal\":{\"name\":\"High Temperature Materials and Processes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature Materials and Processes\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/htmp-2022-0274\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature Materials and Processes","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/htmp-2022-0274","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Characteristics and purification of Himalayan salt by high temperature melting
Abstract Himalayan rock salt contains a variety of minerals and trace elements, which is conducive to human health. The solutions of black rock salt and rose salt are alkaline, and the content of water insoluble matter is 0.34 and 0.083%, respectively. The element composition of water insoluble matter in rock salt is determined and analyzed. It is found that the main component of two kinds of rock salt water insoluble matter is soil. Due to the presence of water insoluble matter in rock salt, according to the different specific gravity of molten sodium chloride and insoluble matter, rock salt was purified by high-temperature melting method. Rose salt is mainly studied during purification. The results showed that the content of insoluble matter in rose salt decreased from 0.083 to 0.0024% after holding at 950°C for 40 min; the contents of arsenic, barium, and lead decreased to 0.0032, 0.61, and 0.21 mg·kg−1, respectively; the content of sodium increased to 39.24%, the contents of calcium, magnesium, and iron reached to 2,200, 855, and 1.31 mg·kg−1, respectively.
期刊介绍:
High Temperature Materials and Processes offers an international publication forum for new ideas, insights and results related to high-temperature materials and processes in science and technology. The journal publishes original research papers and short communications addressing topics at the forefront of high-temperature materials research including processing of various materials at high temperatures. Occasionally, reviews of a specific topic are included. The journal also publishes special issues featuring ongoing research programs as well as symposia of high-temperature materials and processes, and other related research activities.
Emphasis is placed on the multi-disciplinary nature of high-temperature materials and processes for various materials in a variety of states. Such a nature of the journal will help readers who wish to become acquainted with related subjects by obtaining information of various aspects of high-temperature materials research. The increasing spread of information on these subjects will also help to shed light on relevant topics of high-temperature materials and processes outside of readers’ own core specialties.