{"title":"关于平面曲线的雅可比矩阵的希尔伯特向量","authors":"Armando Cerminara, A. Dimca, G. Ilardi","doi":"10.4171/pm/2038","DOIUrl":null,"url":null,"abstract":"We identify several classes of curves $C:f=0$, for which the Hilbert vector of the Jacobian module $N(f)$ can be completely determined, namely the 3-syzygy curves, the maximal Tjurina curves and the nodal curves, having only rational irreducible components. A result due to Hartshorne, on the cohomology of some rank 2 vector bundles on $\\mathbb{P}^2$, is used to get a sharp lower bound for the initial degree of the Jacobian module $N(f)$, under a semistability condition.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the Hilbert vector of the Jacobian module of a plane curve\",\"authors\":\"Armando Cerminara, A. Dimca, G. Ilardi\",\"doi\":\"10.4171/pm/2038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We identify several classes of curves $C:f=0$, for which the Hilbert vector of the Jacobian module $N(f)$ can be completely determined, namely the 3-syzygy curves, the maximal Tjurina curves and the nodal curves, having only rational irreducible components. A result due to Hartshorne, on the cohomology of some rank 2 vector bundles on $\\\\mathbb{P}^2$, is used to get a sharp lower bound for the initial degree of the Jacobian module $N(f)$, under a semistability condition.\",\"PeriodicalId\":51269,\"journal\":{\"name\":\"Portugaliae Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Portugaliae Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/pm/2038\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Hilbert vector of the Jacobian module of a plane curve
We identify several classes of curves $C:f=0$, for which the Hilbert vector of the Jacobian module $N(f)$ can be completely determined, namely the 3-syzygy curves, the maximal Tjurina curves and the nodal curves, having only rational irreducible components. A result due to Hartshorne, on the cohomology of some rank 2 vector bundles on $\mathbb{P}^2$, is used to get a sharp lower bound for the initial degree of the Jacobian module $N(f)$, under a semistability condition.
期刊介绍:
Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.