铜基体上Ni-Cr-B-Si涂层的等离子转移电弧熔覆

IF 2.2 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chao Zhang, Ruidong Wang, Rong Hu, Zhiyu Chen, Yuwen Zhang, Xionggang Lu
{"title":"铜基体上Ni-Cr-B-Si涂层的等离子转移电弧熔覆","authors":"Chao Zhang,&nbsp;Ruidong Wang,&nbsp;Rong Hu,&nbsp;Zhiyu Chen,&nbsp;Yuwen Zhang,&nbsp;Xionggang Lu","doi":"10.1016/j.mlblux.2022.100137","DOIUrl":null,"url":null,"abstract":"<div><p>Aiming to improve the surface properties of copper, a Ni-Cr-B-Si coating was fabricated by plasma transferred arc (PTA) cladding. The coating formed a good metallurgical bonding with the copper substrate, and the dilution rate was about 15.9%. The coating mainly contained γ-(Cu, Fe, Ni), Cr<sub>23</sub>C<sub>6</sub>, CrB and Ni<sub>3</sub>Si phases, which played a role of solid solution strengthening and dispersion strengthening. The hardness of the coating was significantly improved compared to the copper substrate, which was approximately 7.8 times that of the substrate. The wear resistance of the coating was 5.0 times higher than that of the copper substrate, and the wear mechanism was abrasive wear.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590150822000175/pdfft?md5=3ca52287202ff392d256df8ffe229fb0&pid=1-s2.0-S2590150822000175-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Plasma transferred arc cladding of Ni-Cr-B-Si coating on copper substrate\",\"authors\":\"Chao Zhang,&nbsp;Ruidong Wang,&nbsp;Rong Hu,&nbsp;Zhiyu Chen,&nbsp;Yuwen Zhang,&nbsp;Xionggang Lu\",\"doi\":\"10.1016/j.mlblux.2022.100137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aiming to improve the surface properties of copper, a Ni-Cr-B-Si coating was fabricated by plasma transferred arc (PTA) cladding. The coating formed a good metallurgical bonding with the copper substrate, and the dilution rate was about 15.9%. The coating mainly contained γ-(Cu, Fe, Ni), Cr<sub>23</sub>C<sub>6</sub>, CrB and Ni<sub>3</sub>Si phases, which played a role of solid solution strengthening and dispersion strengthening. The hardness of the coating was significantly improved compared to the copper substrate, which was approximately 7.8 times that of the substrate. The wear resistance of the coating was 5.0 times higher than that of the copper substrate, and the wear mechanism was abrasive wear.</p></div>\",\"PeriodicalId\":18245,\"journal\":{\"name\":\"Materials Letters: X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590150822000175/pdfft?md5=3ca52287202ff392d256df8ffe229fb0&pid=1-s2.0-S2590150822000175-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590150822000175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590150822000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

为了改善铜的表面性能,采用等离子体转移电弧(PTA)熔覆法制备了Ni-Cr-B-Si涂层。涂层与铜基体形成良好的冶金结合,稀释率约为15.9%。涂层主要含有γ-(Cu、Fe、Ni)、Cr23C6、CrB和Ni3Si相,具有固溶强化和弥散强化作用。与铜基体相比,涂层的硬度显著提高,约为基体的7.8倍。涂层的耐磨性比铜基体高5.0倍,磨损机制为磨粒磨损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasma transferred arc cladding of Ni-Cr-B-Si coating on copper substrate

Aiming to improve the surface properties of copper, a Ni-Cr-B-Si coating was fabricated by plasma transferred arc (PTA) cladding. The coating formed a good metallurgical bonding with the copper substrate, and the dilution rate was about 15.9%. The coating mainly contained γ-(Cu, Fe, Ni), Cr23C6, CrB and Ni3Si phases, which played a role of solid solution strengthening and dispersion strengthening. The hardness of the coating was significantly improved compared to the copper substrate, which was approximately 7.8 times that of the substrate. The wear resistance of the coating was 5.0 times higher than that of the copper substrate, and the wear mechanism was abrasive wear.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
50
审稿时长
114 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信