Patrick Wefing, Marc Trilling, A. Gossen, P. Neubauer, J. Schneider
{"title":"由平均停留时间控制的连续粉碎系统","authors":"Patrick Wefing, Marc Trilling, A. Gossen, P. Neubauer, J. Schneider","doi":"10.58430/jib.v129i1.7","DOIUrl":null,"url":null,"abstract":"Continuous processes offer more environmentally friendlier beer production compared to the batch production. However, the continuous production of mashing has not become state-of-the-art in the brewing industry. The controllability and flexibility of this process still has hurdles for practical implementation, but which are necessary to react to changing raw materials. Once overcome, a continuous mashing can be efficiently adapted to the raw materials. Both mean residence time and temperature were investigated as key parameters to influence the extract and fermentable sugar content of the wort. The continuous mashing process was implemented as continuous stirred tank reactor (CSTR) cascade consisting of mashing in (20°C), protein rest (50°C), β-amylase rest (62-64°C), saccharification rest (72°C) and mashing out (78°C). Two different temperature settings for the β-amylase rest were investigated with particular emphasis on fermentable sugars. Analysis of Variance (ANOVA) and a post-hoc analysis showed that the mean residence time and temperature settings were suitable control parameters for the fermentable sugars. In the experimental conditions, the most pronounced effect was with the β-amylase rest. These results broaden the understanding of heterogenous CSTR mashing systems about assembly and selection of process parameters","PeriodicalId":17279,"journal":{"name":"Journal of The Institute of Brewing","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A continuous mashing system controlled by mean residence time\",\"authors\":\"Patrick Wefing, Marc Trilling, A. Gossen, P. Neubauer, J. Schneider\",\"doi\":\"10.58430/jib.v129i1.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous processes offer more environmentally friendlier beer production compared to the batch production. However, the continuous production of mashing has not become state-of-the-art in the brewing industry. The controllability and flexibility of this process still has hurdles for practical implementation, but which are necessary to react to changing raw materials. Once overcome, a continuous mashing can be efficiently adapted to the raw materials. Both mean residence time and temperature were investigated as key parameters to influence the extract and fermentable sugar content of the wort. The continuous mashing process was implemented as continuous stirred tank reactor (CSTR) cascade consisting of mashing in (20°C), protein rest (50°C), β-amylase rest (62-64°C), saccharification rest (72°C) and mashing out (78°C). Two different temperature settings for the β-amylase rest were investigated with particular emphasis on fermentable sugars. Analysis of Variance (ANOVA) and a post-hoc analysis showed that the mean residence time and temperature settings were suitable control parameters for the fermentable sugars. In the experimental conditions, the most pronounced effect was with the β-amylase rest. These results broaden the understanding of heterogenous CSTR mashing systems about assembly and selection of process parameters\",\"PeriodicalId\":17279,\"journal\":{\"name\":\"Journal of The Institute of Brewing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Institute of Brewing\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.58430/jib.v129i1.7\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Institute of Brewing","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.58430/jib.v129i1.7","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A continuous mashing system controlled by mean residence time
Continuous processes offer more environmentally friendlier beer production compared to the batch production. However, the continuous production of mashing has not become state-of-the-art in the brewing industry. The controllability and flexibility of this process still has hurdles for practical implementation, but which are necessary to react to changing raw materials. Once overcome, a continuous mashing can be efficiently adapted to the raw materials. Both mean residence time and temperature were investigated as key parameters to influence the extract and fermentable sugar content of the wort. The continuous mashing process was implemented as continuous stirred tank reactor (CSTR) cascade consisting of mashing in (20°C), protein rest (50°C), β-amylase rest (62-64°C), saccharification rest (72°C) and mashing out (78°C). Two different temperature settings for the β-amylase rest were investigated with particular emphasis on fermentable sugars. Analysis of Variance (ANOVA) and a post-hoc analysis showed that the mean residence time and temperature settings were suitable control parameters for the fermentable sugars. In the experimental conditions, the most pronounced effect was with the β-amylase rest. These results broaden the understanding of heterogenous CSTR mashing systems about assembly and selection of process parameters
期刊介绍:
The Journal has been publishing original research for over 125 years relating to brewing, fermentation, distilling, raw materials and by-products. Research ranges from the fundamental to applied and is from universities, research institutes and industry laboratories worldwide.
The scope of the Journal is cereal based beers, wines and spirits. Manuscripts on cider may also be submitted as they have been since 1911.
Manuscripts on fruit based wines and spirits are not within the scope of the Journal of the Institute of Brewing.