具有时变记忆核的非经典扩散方程及一类新的非线性

Pub Date : 2022-02-21 DOI:10.1017/S0017089522000027
L. T. Thuy, N. Toan
{"title":"具有时变记忆核的非经典扩散方程及一类新的非线性","authors":"L. T. Thuy, N. Toan","doi":"10.1017/S0017089522000027","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we consider the nonclassical diffusion equations with time-dependent memory kernels \n\\begin{equation*} u_{t} - \\Delta u_t - \\Delta u - \\int_0^\\infty k^{\\prime}_{t}(s) \\Delta u(t-s) ds + f( u) = g \\end{equation*}\n on a bounded domain \n$\\Omega \\subset \\mathbb{R}^N,\\, N\\geq 3$\n . Firstly, we study the existence and uniqueness of weak solutions and then, we investigate the existence of the time-dependent global attractors \n$\\mathcal{A}=\\{A_t\\}_{t\\in\\mathbb{R}}$\n in \n$H_0^1(\\Omega)\\times L^2_{\\mu_t}(\\mathbb{R}^+,H_0^1(\\Omega))$\n . Finally, we prove that the asymptotic dynamics of our problem, when \n$k_t$\n approaches a multiple \n$m\\delta_0$\n of the Dirac mass at zero as \n$t\\to \\infty$\n , is close to the one of its formal limit \n\\begin{equation*}u_{t} - \\Delta u_{t} - (1+m)\\Delta u + f( u) = g. \\end{equation*}\n The main novelty of our results is that no restriction on the upper growth of the nonlinearity is imposed and the memory kernel \n$k_t(\\!\\cdot\\!)$\n depends on time, which allows for instance to describe the dynamics of aging materials.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The nonclassical diffusion equations with time-dependent memory kernels and a new class of nonlinearities\",\"authors\":\"L. T. Thuy, N. Toan\",\"doi\":\"10.1017/S0017089522000027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, we consider the nonclassical diffusion equations with time-dependent memory kernels \\n\\\\begin{equation*} u_{t} - \\\\Delta u_t - \\\\Delta u - \\\\int_0^\\\\infty k^{\\\\prime}_{t}(s) \\\\Delta u(t-s) ds + f( u) = g \\\\end{equation*}\\n on a bounded domain \\n$\\\\Omega \\\\subset \\\\mathbb{R}^N,\\\\, N\\\\geq 3$\\n . Firstly, we study the existence and uniqueness of weak solutions and then, we investigate the existence of the time-dependent global attractors \\n$\\\\mathcal{A}=\\\\{A_t\\\\}_{t\\\\in\\\\mathbb{R}}$\\n in \\n$H_0^1(\\\\Omega)\\\\times L^2_{\\\\mu_t}(\\\\mathbb{R}^+,H_0^1(\\\\Omega))$\\n . Finally, we prove that the asymptotic dynamics of our problem, when \\n$k_t$\\n approaches a multiple \\n$m\\\\delta_0$\\n of the Dirac mass at zero as \\n$t\\\\to \\\\infty$\\n , is close to the one of its formal limit \\n\\\\begin{equation*}u_{t} - \\\\Delta u_{t} - (1+m)\\\\Delta u + f( u) = g. \\\\end{equation*}\\n The main novelty of our results is that no restriction on the upper growth of the nonlinearity is imposed and the memory kernel \\n$k_t(\\\\!\\\\cdot\\\\!)$\\n depends on time, which allows for instance to describe the dynamics of aging materials.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0017089522000027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089522000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要在本研究中,我们考虑了在有界域$\Omega\subet\mathbb{R}^N,\,N\geq3$上具有含时记忆核的非经典扩散方程。首先,我们研究弱解的存在性和唯一性,然后,我们研究了在$H_0^1(\Omega)\times L^2_{\mu_t}(\mathbb{R}^+,H_0^1)$中含时全局吸引子$\mathcal{A}=\{A_t\}_{t\ in\mathbb{R}}$的存在性。最后,我们证明了当$k_t$接近零处Dirac质量的倍数$m\delta_0$为$t\t\infty$时,我们问题的渐近动力学,接近其形式极限\ begin{equation*}u_{t}-\Delta u_{t}-(1+m)\ Delta u+f(u)=g。\ end{equation*}我们的结果的主要新颖之处在于,没有对非线性的上限增长施加限制,并且内存内核$k_t(\!\cdot\!)$取决于时间,这允许例如描述老化材料的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The nonclassical diffusion equations with time-dependent memory kernels and a new class of nonlinearities
Abstract In this study, we consider the nonclassical diffusion equations with time-dependent memory kernels \begin{equation*} u_{t} - \Delta u_t - \Delta u - \int_0^\infty k^{\prime}_{t}(s) \Delta u(t-s) ds + f( u) = g \end{equation*} on a bounded domain $\Omega \subset \mathbb{R}^N,\, N\geq 3$ . Firstly, we study the existence and uniqueness of weak solutions and then, we investigate the existence of the time-dependent global attractors $\mathcal{A}=\{A_t\}_{t\in\mathbb{R}}$ in $H_0^1(\Omega)\times L^2_{\mu_t}(\mathbb{R}^+,H_0^1(\Omega))$ . Finally, we prove that the asymptotic dynamics of our problem, when $k_t$ approaches a multiple $m\delta_0$ of the Dirac mass at zero as $t\to \infty$ , is close to the one of its formal limit \begin{equation*}u_{t} - \Delta u_{t} - (1+m)\Delta u + f( u) = g. \end{equation*} The main novelty of our results is that no restriction on the upper growth of the nonlinearity is imposed and the memory kernel $k_t(\!\cdot\!)$ depends on time, which allows for instance to describe the dynamics of aging materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信