{"title":"所有的化学反应原则上都是可逆的吗?“概念完全”和“实际完全”反应之间的热力学区别","authors":"A. Ciccioli","doi":"10.1515/jnet-2022-0044","DOIUrl":null,"url":null,"abstract":"Abstract Among the chemical reactions having a pronounced thermodynamic driving force to the formation of products, a distinction has to be made between processes which attain a chemical equilibrium state very much shifted towards the products and those where the final equilibrium state corresponds to the truly complete consumption of reactant(s), i.e. where a true chemical equilibrium is actually not attained under the given conditions. Based on a few selected examples, two thermodynamic arguments are led which rationalise the above distinction from different points of view: a phase-rule point of view and a Gibbs energy minimization approach. “Conceptually complete” reactions involve pure phases and, as a consequence, establishing chemical equilibrium would imply a negative variance, what is avoided by the complete consumption of one or more phases. In the Gibbs energy approach, “conceptually complete” reactions and “practically complete” ones can be distinguished (at fixed temperature and pressure) by the different way to attain the minimum Gibbs energy condition, respectively with sharp (not differentiable) and flat (zero derivative) minimum points as a function of the extent of reaction ξ.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"48 1","pages":"195 - 206"},"PeriodicalIF":4.3000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Are all chemical reactions in principle reversible? Thermodynamic distinction between “conceptually complete” and “practically complete” reactions\",\"authors\":\"A. Ciccioli\",\"doi\":\"10.1515/jnet-2022-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Among the chemical reactions having a pronounced thermodynamic driving force to the formation of products, a distinction has to be made between processes which attain a chemical equilibrium state very much shifted towards the products and those where the final equilibrium state corresponds to the truly complete consumption of reactant(s), i.e. where a true chemical equilibrium is actually not attained under the given conditions. Based on a few selected examples, two thermodynamic arguments are led which rationalise the above distinction from different points of view: a phase-rule point of view and a Gibbs energy minimization approach. “Conceptually complete” reactions involve pure phases and, as a consequence, establishing chemical equilibrium would imply a negative variance, what is avoided by the complete consumption of one or more phases. In the Gibbs energy approach, “conceptually complete” reactions and “practically complete” ones can be distinguished (at fixed temperature and pressure) by the different way to attain the minimum Gibbs energy condition, respectively with sharp (not differentiable) and flat (zero derivative) minimum points as a function of the extent of reaction ξ.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":\"48 1\",\"pages\":\"195 - 206\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2022-0044\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2022-0044","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Are all chemical reactions in principle reversible? Thermodynamic distinction between “conceptually complete” and “practically complete” reactions
Abstract Among the chemical reactions having a pronounced thermodynamic driving force to the formation of products, a distinction has to be made between processes which attain a chemical equilibrium state very much shifted towards the products and those where the final equilibrium state corresponds to the truly complete consumption of reactant(s), i.e. where a true chemical equilibrium is actually not attained under the given conditions. Based on a few selected examples, two thermodynamic arguments are led which rationalise the above distinction from different points of view: a phase-rule point of view and a Gibbs energy minimization approach. “Conceptually complete” reactions involve pure phases and, as a consequence, establishing chemical equilibrium would imply a negative variance, what is avoided by the complete consumption of one or more phases. In the Gibbs energy approach, “conceptually complete” reactions and “practically complete” ones can be distinguished (at fixed temperature and pressure) by the different way to attain the minimum Gibbs energy condition, respectively with sharp (not differentiable) and flat (zero derivative) minimum points as a function of the extent of reaction ξ.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.