Hunanyan Sona, Rue Håvard, Plummer Martyn, Roos Małgorzata
{"title":"经验确定性的量化:JAGS和INLA估计的贝叶斯元分析中似然加权对后验位置和传播的影响","authors":"Hunanyan Sona, Rue Håvard, Plummer Martyn, Roos Małgorzata","doi":"10.1214/22-ba1325","DOIUrl":null,"url":null,"abstract":"The popular Bayesian meta-analysis expressed by Bayesian normal-normal hierarchical model (NNHM) synthesizes knowledge from several studies and is highly relevant in practice. Moreover, NNHM is the simplest Bayesian hierarchical model (BHM), which illustrates problems typical in more complex BHMs. Until now, it has been unclear to what extent the data determines the marginal posterior distributions of the parameters in NNHM. To address this issue we computed the second derivative of the Bhattacharyya coefficient with respect to the weighted likelihood, defined the total empirical determinacy (TED), the proportion of the empirical determinacy of location to TED (pEDL), and the proportion of the empirical determinacy of spread to TED (pEDS). We implemented this method in the R package \\texttt{ed4bhm} and considered two case studies and one simulation study. We quantified TED, pEDL and pEDS under different modeling conditions such as model parametrization, the primary outcome, and the prior. This clarified to what extent the location and spread of the marginal posterior distributions of the parameters are determined by the data. Although these investigations focused on Bayesian NNHM, the method proposed is applicable more generally to complex BHMs.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantification of Empirical Determinacy: The Impact of Likelihood Weighting on Posterior Location and Spread in Bayesian Meta-Analysis Estimated with JAGS and INLA\",\"authors\":\"Hunanyan Sona, Rue Håvard, Plummer Martyn, Roos Małgorzata\",\"doi\":\"10.1214/22-ba1325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The popular Bayesian meta-analysis expressed by Bayesian normal-normal hierarchical model (NNHM) synthesizes knowledge from several studies and is highly relevant in practice. Moreover, NNHM is the simplest Bayesian hierarchical model (BHM), which illustrates problems typical in more complex BHMs. Until now, it has been unclear to what extent the data determines the marginal posterior distributions of the parameters in NNHM. To address this issue we computed the second derivative of the Bhattacharyya coefficient with respect to the weighted likelihood, defined the total empirical determinacy (TED), the proportion of the empirical determinacy of location to TED (pEDL), and the proportion of the empirical determinacy of spread to TED (pEDS). We implemented this method in the R package \\\\texttt{ed4bhm} and considered two case studies and one simulation study. We quantified TED, pEDL and pEDS under different modeling conditions such as model parametrization, the primary outcome, and the prior. This clarified to what extent the location and spread of the marginal posterior distributions of the parameters are determined by the data. Although these investigations focused on Bayesian NNHM, the method proposed is applicable more generally to complex BHMs.\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ba1325\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ba1325","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Quantification of Empirical Determinacy: The Impact of Likelihood Weighting on Posterior Location and Spread in Bayesian Meta-Analysis Estimated with JAGS and INLA
The popular Bayesian meta-analysis expressed by Bayesian normal-normal hierarchical model (NNHM) synthesizes knowledge from several studies and is highly relevant in practice. Moreover, NNHM is the simplest Bayesian hierarchical model (BHM), which illustrates problems typical in more complex BHMs. Until now, it has been unclear to what extent the data determines the marginal posterior distributions of the parameters in NNHM. To address this issue we computed the second derivative of the Bhattacharyya coefficient with respect to the weighted likelihood, defined the total empirical determinacy (TED), the proportion of the empirical determinacy of location to TED (pEDL), and the proportion of the empirical determinacy of spread to TED (pEDS). We implemented this method in the R package \texttt{ed4bhm} and considered two case studies and one simulation study. We quantified TED, pEDL and pEDS under different modeling conditions such as model parametrization, the primary outcome, and the prior. This clarified to what extent the location and spread of the marginal posterior distributions of the parameters are determined by the data. Although these investigations focused on Bayesian NNHM, the method proposed is applicable more generally to complex BHMs.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.