用于测量空气中微粒子浓度的紧凑型激光设备及其在俄罗斯科学院萨多夫斯基地球大气动力学研究所地球物理监测中心的应用

IF 0.3 Q4 GEOCHEMISTRY & GEOPHYSICS
A. V. Krasheninnikov, D. N. Loktev, S. P. Soloviev, A. A. Spivak
{"title":"用于测量空气中微粒子浓度的紧凑型激光设备及其在俄罗斯科学院萨多夫斯基地球大气动力学研究所地球物理监测中心的应用","authors":"A. V. Krasheninnikov,&nbsp;D. N. Loktev,&nbsp;S. P. Soloviev,&nbsp;A. A. Spivak","doi":"10.3103/S0747923922030082","DOIUrl":null,"url":null,"abstract":"<p>A option of the methodology for observing PM<sub>2.5</sub> and PM<sub>10</sub> particle mass concentrations based on an Arduino UNO board and Sensirion SPS30 laser sensor has been developed. The measuring system built according to the technique was used in a field experiment, as well as in continuous observations at a stationary point: the Moscow Geophysical Monitoring Center of the Institute of Dynamics of Geospheres, Russian Academy of Sciences (IDG RAS). Examples of variations in the observed characteristics are given, which indicate the possibility of using the instrumental system in addition to already existing devices when observing the geophysical environment. Continuous monitoring of microparticle concentrations at the Geophysical Monitoring Center will make it possible not only to assess the degree of atmospheric pollution in the megalopolis, but also highlight certain trends, frequencies, and patterns. Such monitoring will also make it possible to reveal the contribution of various sources to the increase in microparticle concentrations, as well as the effect of pollution on different geophysical fields.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact Laser Devices for Measuring Airborne Microparticle Concentrations and Their Application at the Geophysical Monitoring Center of the Sadovsky Institute of Dynamics of Geospheres, Russian Academy of Sciences\",\"authors\":\"A. V. Krasheninnikov,&nbsp;D. N. Loktev,&nbsp;S. P. Soloviev,&nbsp;A. A. Spivak\",\"doi\":\"10.3103/S0747923922030082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A option of the methodology for observing PM<sub>2.5</sub> and PM<sub>10</sub> particle mass concentrations based on an Arduino UNO board and Sensirion SPS30 laser sensor has been developed. The measuring system built according to the technique was used in a field experiment, as well as in continuous observations at a stationary point: the Moscow Geophysical Monitoring Center of the Institute of Dynamics of Geospheres, Russian Academy of Sciences (IDG RAS). Examples of variations in the observed characteristics are given, which indicate the possibility of using the instrumental system in addition to already existing devices when observing the geophysical environment. Continuous monitoring of microparticle concentrations at the Geophysical Monitoring Center will make it possible not only to assess the degree of atmospheric pollution in the megalopolis, but also highlight certain trends, frequencies, and patterns. Such monitoring will also make it possible to reveal the contribution of various sources to the increase in microparticle concentrations, as well as the effect of pollution on different geophysical fields.</p>\",\"PeriodicalId\":45174,\"journal\":{\"name\":\"Seismic Instruments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seismic Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0747923922030082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismic Instruments","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0747923922030082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

基于 Arduino UNO 板和 Sensirion SPS30 激光传感器的 PM2.5 和 PM10 粒子质量浓度观测方法选项已经开发完成。根据该技术建立的测量系统被用于现场实验,以及在一个固定点(俄罗斯科学院地球大气动力学研究所莫斯科地球物理监测中心)进行连续观测。文中举例说明了观测到的特征变化,这表明在观测地球物理环境时,除了现有的设备外,还可以使用该仪器系统。在地球物理监测中心对微粒子浓度进行连续监测,不仅可以评估大城市的大气污染程度,还可以突出某些趋势、频率和模式。这种监测还可以揭示各种来源对微粒子浓度增加的影响,以及污染对不同地球物理领域的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Compact Laser Devices for Measuring Airborne Microparticle Concentrations and Their Application at the Geophysical Monitoring Center of the Sadovsky Institute of Dynamics of Geospheres, Russian Academy of Sciences

Compact Laser Devices for Measuring Airborne Microparticle Concentrations and Their Application at the Geophysical Monitoring Center of the Sadovsky Institute of Dynamics of Geospheres, Russian Academy of Sciences

A option of the methodology for observing PM2.5 and PM10 particle mass concentrations based on an Arduino UNO board and Sensirion SPS30 laser sensor has been developed. The measuring system built according to the technique was used in a field experiment, as well as in continuous observations at a stationary point: the Moscow Geophysical Monitoring Center of the Institute of Dynamics of Geospheres, Russian Academy of Sciences (IDG RAS). Examples of variations in the observed characteristics are given, which indicate the possibility of using the instrumental system in addition to already existing devices when observing the geophysical environment. Continuous monitoring of microparticle concentrations at the Geophysical Monitoring Center will make it possible not only to assess the degree of atmospheric pollution in the megalopolis, but also highlight certain trends, frequencies, and patterns. Such monitoring will also make it possible to reveal the contribution of various sources to the increase in microparticle concentrations, as well as the effect of pollution on different geophysical fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Seismic Instruments
Seismic Instruments GEOCHEMISTRY & GEOPHYSICS-
自引率
44.40%
发文量
45
期刊介绍: Seismic Instruments is a journal devoted to the description of geophysical instruments used in seismic research. In addition to covering the actual instruments for registering seismic waves, substantial room is devoted to solving instrumental-methodological problems of geophysical monitoring, applying various methods that are used to search for earthquake precursors, to studying earthquake nucleation processes and to monitoring natural and technogenous processes. The description of the construction, working elements, and technical characteristics of the instruments, as well as some results of implementation of the instruments and interpretation of the results are given. Attention is paid to seismic monitoring data and earthquake catalog quality Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信