Shaoxiao Liu , Fangyuan Yang , Jin Zhou , Yu Peng , Enlin Wang , Junjie Song , Baowei Su
{"title":"β-环糊精辅助界面聚合制备高渗透有机溶剂纳滤膜","authors":"Shaoxiao Liu , Fangyuan Yang , Jin Zhou , Yu Peng , Enlin Wang , Junjie Song , Baowei Su","doi":"10.1016/j.memsci.2023.122052","DOIUrl":null,"url":null,"abstract":"<div><p>As the key of organic solvent nanofiltration (OSN) technology, OSN membranes could effectively retain small molecules with molecular weight between 200 and 1000 Dalton (Da), but they still face some problems such as low solvent permeance. In this work, we fabricated a poly(amide-ester) selective layer on polyimide substrate surface by introducing β-cyclodextrin (β-CD) into the aqueous phase solution to assist the interfacial polymerization reaction between <em>m</em>-phenylenediamine (MPD) and trimesoyl chloride (TMC), followed by cross-linking and solvent activation treatment. Thus, we successfully fabricated a kind of thin film composite (TFC) membrane with high selective permeability for OSN. We emphasized that extra-low contents were employed for both MPD and β-CD, which were 0.05 wt% and 50 mg L<sup>−1</sup>, respectively. The effect of β-CD content on the pore size, surface shape, surface hydrophilicity, surface chemistry, filtration performance, as well as durability performance of the OSN membrane was studied in depth. β-CD endows the selective layer with better hydrophilicity and larger pore size. The optimized OSN membrane possesses a Rhodamine B (RDB, 479 Da) rejection of 99.2 % and an ethanol permeance of 70.6 L m<sup>−2</sup> h<sup>−1</sup> MPa<sup>−1</sup>. Furthermore, the optimized OSN membrane remains above 99 % RDB rejection after being immersed in DMF at 25 °C for 1000 h, which demonstrates its superb solvent resistance. Additionally, the optimized OSN membrane exhibits outstanding long-time performance and possesses a rejection of 98 % for Jacobsen catalyst during more than 106 h semi-continuous filtration using Jacobsen catalyst/ethyl acetate solution as feed, indicating its vast potential in the recovery of catalyst.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"687 ","pages":"Article 122052"},"PeriodicalIF":8.4000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376738823007081/pdfft?md5=58d9bff9f64f371e0a673b3c9b7fb3ed&pid=1-s2.0-S0376738823007081-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Construction of highly permeable organic solvent nanofiltration membrane via β-cyclodextrin assisted interfacial polymerization\",\"authors\":\"Shaoxiao Liu , Fangyuan Yang , Jin Zhou , Yu Peng , Enlin Wang , Junjie Song , Baowei Su\",\"doi\":\"10.1016/j.memsci.2023.122052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the key of organic solvent nanofiltration (OSN) technology, OSN membranes could effectively retain small molecules with molecular weight between 200 and 1000 Dalton (Da), but they still face some problems such as low solvent permeance. In this work, we fabricated a poly(amide-ester) selective layer on polyimide substrate surface by introducing β-cyclodextrin (β-CD) into the aqueous phase solution to assist the interfacial polymerization reaction between <em>m</em>-phenylenediamine (MPD) and trimesoyl chloride (TMC), followed by cross-linking and solvent activation treatment. Thus, we successfully fabricated a kind of thin film composite (TFC) membrane with high selective permeability for OSN. We emphasized that extra-low contents were employed for both MPD and β-CD, which were 0.05 wt% and 50 mg L<sup>−1</sup>, respectively. The effect of β-CD content on the pore size, surface shape, surface hydrophilicity, surface chemistry, filtration performance, as well as durability performance of the OSN membrane was studied in depth. β-CD endows the selective layer with better hydrophilicity and larger pore size. The optimized OSN membrane possesses a Rhodamine B (RDB, 479 Da) rejection of 99.2 % and an ethanol permeance of 70.6 L m<sup>−2</sup> h<sup>−1</sup> MPa<sup>−1</sup>. Furthermore, the optimized OSN membrane remains above 99 % RDB rejection after being immersed in DMF at 25 °C for 1000 h, which demonstrates its superb solvent resistance. Additionally, the optimized OSN membrane exhibits outstanding long-time performance and possesses a rejection of 98 % for Jacobsen catalyst during more than 106 h semi-continuous filtration using Jacobsen catalyst/ethyl acetate solution as feed, indicating its vast potential in the recovery of catalyst.</p></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":\"687 \",\"pages\":\"Article 122052\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0376738823007081/pdfft?md5=58d9bff9f64f371e0a673b3c9b7fb3ed&pid=1-s2.0-S0376738823007081-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738823007081\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738823007081","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Construction of highly permeable organic solvent nanofiltration membrane via β-cyclodextrin assisted interfacial polymerization
As the key of organic solvent nanofiltration (OSN) technology, OSN membranes could effectively retain small molecules with molecular weight between 200 and 1000 Dalton (Da), but they still face some problems such as low solvent permeance. In this work, we fabricated a poly(amide-ester) selective layer on polyimide substrate surface by introducing β-cyclodextrin (β-CD) into the aqueous phase solution to assist the interfacial polymerization reaction between m-phenylenediamine (MPD) and trimesoyl chloride (TMC), followed by cross-linking and solvent activation treatment. Thus, we successfully fabricated a kind of thin film composite (TFC) membrane with high selective permeability for OSN. We emphasized that extra-low contents were employed for both MPD and β-CD, which were 0.05 wt% and 50 mg L−1, respectively. The effect of β-CD content on the pore size, surface shape, surface hydrophilicity, surface chemistry, filtration performance, as well as durability performance of the OSN membrane was studied in depth. β-CD endows the selective layer with better hydrophilicity and larger pore size. The optimized OSN membrane possesses a Rhodamine B (RDB, 479 Da) rejection of 99.2 % and an ethanol permeance of 70.6 L m−2 h−1 MPa−1. Furthermore, the optimized OSN membrane remains above 99 % RDB rejection after being immersed in DMF at 25 °C for 1000 h, which demonstrates its superb solvent resistance. Additionally, the optimized OSN membrane exhibits outstanding long-time performance and possesses a rejection of 98 % for Jacobsen catalyst during more than 106 h semi-continuous filtration using Jacobsen catalyst/ethyl acetate solution as feed, indicating its vast potential in the recovery of catalyst.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.