初边值问题解在定义域外的解析推广

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Matthew Farkas, J. Cisneros, B. Deconinck
{"title":"初边值问题解在定义域外的解析推广","authors":"Matthew Farkas, J. Cisneros, B. Deconinck","doi":"10.1093/imamat/hxad007","DOIUrl":null,"url":null,"abstract":"\n We examine the analytic extension of solutions of linear, constant-coefficient initial-boundary value problems outside their spatial domain of definition. We use the Unified Transform Method or Method of Fokas, which gives a representation for solutions to half-line and finite-interval initial-boundary value problems as integrals of kernels with explicit spatial and temporal dependence. These solution representations are defined within the spatial domain of the problem. We obtain the extension of these representation formulae via Taylor series outside these spatial domains and find the extension of the initial condition that gives rise to a whole-line initial-value problem solved by the extended solution. In general, the extended initial condition is not differentiable or continuous unless the boundary and initial conditions satisfy compatibility conditions. We analyze dissipative and dispersive problems, and problems with continuous and discrete spatial variables.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The analytic extension of solutions to initial-boundary value problems outside their domain of definition\",\"authors\":\"Matthew Farkas, J. Cisneros, B. Deconinck\",\"doi\":\"10.1093/imamat/hxad007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We examine the analytic extension of solutions of linear, constant-coefficient initial-boundary value problems outside their spatial domain of definition. We use the Unified Transform Method or Method of Fokas, which gives a representation for solutions to half-line and finite-interval initial-boundary value problems as integrals of kernels with explicit spatial and temporal dependence. These solution representations are defined within the spatial domain of the problem. We obtain the extension of these representation formulae via Taylor series outside these spatial domains and find the extension of the initial condition that gives rise to a whole-line initial-value problem solved by the extended solution. In general, the extended initial condition is not differentiable or continuous unless the boundary and initial conditions satisfy compatibility conditions. We analyze dissipative and dispersive problems, and problems with continuous and discrete spatial variables.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imamat/hxad007\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imamat/hxad007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了线性常系数初边值问题解在其定义的空间域外的解析推广。我们使用统一变换方法或Fokas方法,将半线和有限区间初边值问题的解表示为具有明确时空依赖性的核的积分。这些解表示是在问题的空间域中定义的。我们通过泰勒级数在这些空间域外得到了这些表示公式的扩展,并找到了由扩展解求解的整线初值问题的初始条件的扩展。一般情况下,除非边界和初始条件满足相容条件,否则扩展初始条件是不可微的或连续的。我们分析了耗散和色散问题,以及连续和离散空间变量的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The analytic extension of solutions to initial-boundary value problems outside their domain of definition
We examine the analytic extension of solutions of linear, constant-coefficient initial-boundary value problems outside their spatial domain of definition. We use the Unified Transform Method or Method of Fokas, which gives a representation for solutions to half-line and finite-interval initial-boundary value problems as integrals of kernels with explicit spatial and temporal dependence. These solution representations are defined within the spatial domain of the problem. We obtain the extension of these representation formulae via Taylor series outside these spatial domains and find the extension of the initial condition that gives rise to a whole-line initial-value problem solved by the extended solution. In general, the extended initial condition is not differentiable or continuous unless the boundary and initial conditions satisfy compatibility conditions. We analyze dissipative and dispersive problems, and problems with continuous and discrete spatial variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信