Ming Lang, Xiao-Li Ruan, Chong He, Zhi-Qiang Chen, Tao Xu, Hai-Bin Zhang, Yun-Tao Cheng
{"title":"激光同轴粉末增材制造方法高效制备石英玻璃","authors":"Ming Lang, Xiao-Li Ruan, Chong He, Zhi-Qiang Chen, Tao Xu, Hai-Bin Zhang, Yun-Tao Cheng","doi":"10.1089/3dp.2022.0137","DOIUrl":null,"url":null,"abstract":"<p><p>This article investigates a laser-directed energy deposition additive manufacturing (AM) method, based on coaxial powder feeding, for preparing quartz glass. Through synergistic optimization of line deposition and plane deposition experiments, key parameters of laser coaxial powder feeding AM were identified. The corresponding mechanical properties, thermal properties, and microstructure of the bulk parts were analyzed. The maximum mechanical strength of the obtained quartz glass element reached 72.36 ± 5.98 MPa, which is ca. 95% that of quartz glass prepared by traditional methods. The thermal properties of the obtained quartz glass element were also close to those prepared by traditional methods. The present research indicates that one can use laser AM technology that is based on coaxial powder feeding to form quartz glass with high density and good thermodynamic properties. Such quartz glass has substantial potential in, for example, optics and biomedicine.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"e655-e665"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057532/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient Fabrication of Quartz Glass Using Laser Coaxial Powder-Fed Additive Manufacturing Approach.\",\"authors\":\"Ming Lang, Xiao-Li Ruan, Chong He, Zhi-Qiang Chen, Tao Xu, Hai-Bin Zhang, Yun-Tao Cheng\",\"doi\":\"10.1089/3dp.2022.0137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article investigates a laser-directed energy deposition additive manufacturing (AM) method, based on coaxial powder feeding, for preparing quartz glass. Through synergistic optimization of line deposition and plane deposition experiments, key parameters of laser coaxial powder feeding AM were identified. The corresponding mechanical properties, thermal properties, and microstructure of the bulk parts were analyzed. The maximum mechanical strength of the obtained quartz glass element reached 72.36 ± 5.98 MPa, which is ca. 95% that of quartz glass prepared by traditional methods. The thermal properties of the obtained quartz glass element were also close to those prepared by traditional methods. The present research indicates that one can use laser AM technology that is based on coaxial powder feeding to form quartz glass with high density and good thermodynamic properties. Such quartz glass has substantial potential in, for example, optics and biomedicine.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"e655-e665\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057532/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2022.0137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了一种基于同轴送粉的激光定向能量沉积增材制造(AM)方法,用于制备石英玻璃。通过线沉积和平面沉积实验的协同优化,确定了激光同轴送粉增材制造的关键参数。分析了相应的机械性能、热性能和块体部件的微观结构。获得的石英玻璃元件的最大机械强度达到 72.36 ± 5.98 MPa,约为传统方法制备的石英玻璃的 95%。获得的石英玻璃元件的热性能也与传统方法制备的石英玻璃元件接近。本研究表明,可以利用基于同轴粉末进给的激光 AM 技术来形成具有高密度和良好热力学性质的石英玻璃。这种石英玻璃在光学和生物医学等领域具有巨大潜力。
Efficient Fabrication of Quartz Glass Using Laser Coaxial Powder-Fed Additive Manufacturing Approach.
This article investigates a laser-directed energy deposition additive manufacturing (AM) method, based on coaxial powder feeding, for preparing quartz glass. Through synergistic optimization of line deposition and plane deposition experiments, key parameters of laser coaxial powder feeding AM were identified. The corresponding mechanical properties, thermal properties, and microstructure of the bulk parts were analyzed. The maximum mechanical strength of the obtained quartz glass element reached 72.36 ± 5.98 MPa, which is ca. 95% that of quartz glass prepared by traditional methods. The thermal properties of the obtained quartz glass element were also close to those prepared by traditional methods. The present research indicates that one can use laser AM technology that is based on coaxial powder feeding to form quartz glass with high density and good thermodynamic properties. Such quartz glass has substantial potential in, for example, optics and biomedicine.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.