Mohamed N Sanad, S. El-Dek, U. Eldemerdash, Mohamed M. ElFaham
{"title":"合成磁铁矿/玉米芯磁性纳米复合材料吸附去除水中(Fe+2)和(Ni+2)的研究","authors":"Mohamed N Sanad, S. El-Dek, U. Eldemerdash, Mohamed M. ElFaham","doi":"10.1088/2399-1984/ac6a31","DOIUrl":null,"url":null,"abstract":"Heavy metals are principal concomitant pollutants in industrial wastewaters, posing a serious threat to public health and the environment. Herein, we develop a novel strategy to produce a new nanocomposite formed from corn cobs (CCs) and magnetite as a nanomaterial for the simultaneous removal of Fe+2 and Ni+2. The as-prepared nanocomposite was systematically characterized by x-ray diffraction, field emission scanning electron microscopy, mapping, energy-dispersive x-ray spectroscopy, high-resolution transmission electron microscopy, selected area electron diffraction, zeta size, and zeta potential. Compared to the CCs and Fe3O4, the nanocomposite showed better adsorption performance. The maximum adsorption efficiency of the CC, Fe3O4, and the nanocomposite was calculated by atomic analysis to be around 91.84%, 91.28%, and 98.51%, respectively, under the same conditions. This study indicates that the nanocomposite could be a favorable biomass-derived adsorbent for the simultaneous removal of heavy metals.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of the adsorptive removal of (Fe+2) and (Ni+2) from water by synthesized magnetite/corn cobs magnetic nanocomposite\",\"authors\":\"Mohamed N Sanad, S. El-Dek, U. Eldemerdash, Mohamed M. ElFaham\",\"doi\":\"10.1088/2399-1984/ac6a31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heavy metals are principal concomitant pollutants in industrial wastewaters, posing a serious threat to public health and the environment. Herein, we develop a novel strategy to produce a new nanocomposite formed from corn cobs (CCs) and magnetite as a nanomaterial for the simultaneous removal of Fe+2 and Ni+2. The as-prepared nanocomposite was systematically characterized by x-ray diffraction, field emission scanning electron microscopy, mapping, energy-dispersive x-ray spectroscopy, high-resolution transmission electron microscopy, selected area electron diffraction, zeta size, and zeta potential. Compared to the CCs and Fe3O4, the nanocomposite showed better adsorption performance. The maximum adsorption efficiency of the CC, Fe3O4, and the nanocomposite was calculated by atomic analysis to be around 91.84%, 91.28%, and 98.51%, respectively, under the same conditions. This study indicates that the nanocomposite could be a favorable biomass-derived adsorbent for the simultaneous removal of heavy metals.\",\"PeriodicalId\":54222,\"journal\":{\"name\":\"Nano Futures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Futures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-1984/ac6a31\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Futures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2399-1984/ac6a31","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Study of the adsorptive removal of (Fe+2) and (Ni+2) from water by synthesized magnetite/corn cobs magnetic nanocomposite
Heavy metals are principal concomitant pollutants in industrial wastewaters, posing a serious threat to public health and the environment. Herein, we develop a novel strategy to produce a new nanocomposite formed from corn cobs (CCs) and magnetite as a nanomaterial for the simultaneous removal of Fe+2 and Ni+2. The as-prepared nanocomposite was systematically characterized by x-ray diffraction, field emission scanning electron microscopy, mapping, energy-dispersive x-ray spectroscopy, high-resolution transmission electron microscopy, selected area electron diffraction, zeta size, and zeta potential. Compared to the CCs and Fe3O4, the nanocomposite showed better adsorption performance. The maximum adsorption efficiency of the CC, Fe3O4, and the nanocomposite was calculated by atomic analysis to be around 91.84%, 91.28%, and 98.51%, respectively, under the same conditions. This study indicates that the nanocomposite could be a favorable biomass-derived adsorbent for the simultaneous removal of heavy metals.
期刊介绍:
Nano Futures mission is to reflect the diverse and multidisciplinary field of nanoscience and nanotechnology that now brings together researchers from across physics, chemistry, biomedicine, materials science, engineering and industry.