{"title":"关于只有有理根的多项式","authors":"Lajos Hajdu, Robert Tijdeman, Nóra Varga","doi":"10.1112/mtk.12209","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study upper bounds for the degrees of polynomials with only rational roots. First, we assume that the coefficients are bounded. In the second theorem, we suppose that the primes 2 and 3 do not divide any coefficient. The third theorem concerns the case that all coefficients are composed of primes from a fixed finite set.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12209","citationCount":"0","resultStr":"{\"title\":\"On polynomials with only rational roots\",\"authors\":\"Lajos Hajdu, Robert Tijdeman, Nóra Varga\",\"doi\":\"10.1112/mtk.12209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study upper bounds for the degrees of polynomials with only rational roots. First, we assume that the coefficients are bounded. In the second theorem, we suppose that the primes 2 and 3 do not divide any coefficient. The third theorem concerns the case that all coefficients are composed of primes from a fixed finite set.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12209\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12209\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12209","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we study upper bounds for the degrees of polynomials with only rational roots. First, we assume that the coefficients are bounded. In the second theorem, we suppose that the primes 2 and 3 do not divide any coefficient. The third theorem concerns the case that all coefficients are composed of primes from a fixed finite set.
期刊介绍:
Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.