{"title":"木虱和纤维素纤维对面包和饼干淀粉结构和消化率的影响","authors":"Hilal Bilgic, Ilkay Sensoy","doi":"10.1016/j.foostr.2022.100302","DOIUrl":null,"url":null,"abstract":"<div><p><span>The purpose of this study was to determine the effect of psyllium and cellulose<span> fiber additions on starch digestion behavior, as well as the structural and textural characteristics of bread and cracker samples. Fiber-added samples were created by replacing 10% of the wheat flour in the recipes with fibers. Fibers reduced the porosity of the bread samples, increased their hardness and </span></span>chewiness, and decreased the hardness of the crackers. Due to its high water-holding capacity, psyllium fiber interfered more than cellulose fiber with the formation of a gluten network and dough structure. At this concentration, psyllium fiber was effective at slowing the digestion of bread and crackers, whereas cellulose fiber had no effect. Psyllium fiber inhibited starch digestion by acting as a physical barrier and limiting enzyme mobility. Due to the structural differences between bread and crackers, they digested differently. The findings indicated that variations in the development of food structures caused by processing methods and the solubility of the fibers used could have a differential effect on starch digestion. Across the board, food processing methods, ingredients, and textural characteristics can all have an effect on starch digestion.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"35 ","pages":"Article 100302"},"PeriodicalIF":5.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effect of psyllium and cellulose fiber addition on the structure and the starch digestibility of bread and crackers\",\"authors\":\"Hilal Bilgic, Ilkay Sensoy\",\"doi\":\"10.1016/j.foostr.2022.100302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The purpose of this study was to determine the effect of psyllium and cellulose<span> fiber additions on starch digestion behavior, as well as the structural and textural characteristics of bread and cracker samples. Fiber-added samples were created by replacing 10% of the wheat flour in the recipes with fibers. Fibers reduced the porosity of the bread samples, increased their hardness and </span></span>chewiness, and decreased the hardness of the crackers. Due to its high water-holding capacity, psyllium fiber interfered more than cellulose fiber with the formation of a gluten network and dough structure. At this concentration, psyllium fiber was effective at slowing the digestion of bread and crackers, whereas cellulose fiber had no effect. Psyllium fiber inhibited starch digestion by acting as a physical barrier and limiting enzyme mobility. Due to the structural differences between bread and crackers, they digested differently. The findings indicated that variations in the development of food structures caused by processing methods and the solubility of the fibers used could have a differential effect on starch digestion. Across the board, food processing methods, ingredients, and textural characteristics can all have an effect on starch digestion.</p></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"35 \",\"pages\":\"Article 100302\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221332912200051X\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221332912200051X","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Effect of psyllium and cellulose fiber addition on the structure and the starch digestibility of bread and crackers
The purpose of this study was to determine the effect of psyllium and cellulose fiber additions on starch digestion behavior, as well as the structural and textural characteristics of bread and cracker samples. Fiber-added samples were created by replacing 10% of the wheat flour in the recipes with fibers. Fibers reduced the porosity of the bread samples, increased their hardness and chewiness, and decreased the hardness of the crackers. Due to its high water-holding capacity, psyllium fiber interfered more than cellulose fiber with the formation of a gluten network and dough structure. At this concentration, psyllium fiber was effective at slowing the digestion of bread and crackers, whereas cellulose fiber had no effect. Psyllium fiber inhibited starch digestion by acting as a physical barrier and limiting enzyme mobility. Due to the structural differences between bread and crackers, they digested differently. The findings indicated that variations in the development of food structures caused by processing methods and the solubility of the fibers used could have a differential effect on starch digestion. Across the board, food processing methods, ingredients, and textural characteristics can all have an effect on starch digestion.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.