{"title":"具有饱和和不对称变时滞的不确定遥操作位置和力跟踪的自适应控制","authors":"M. Pourseifi, S. Rezaei","doi":"10.1515/ijnsns-2021-0429","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a new bounded force feedback control law to improve transparency in nonlinear bilateral teleoperation systems in the presence of three problems in practical applications of teleoperation systems such as input saturation, asymmetric time varying communication delays with no restriction on their rates of variation and parametric uncertainties, simultaneously. The proposed controller is a nonlinear-proportional plus nonlinear damping (nP + nD) controller with the addition of a nonlinear adaptive term and nonlinear function of the environment force on the slave side and nonlinear function of the human force and force error on the master side. Using a novel Lyapunov–Krasovskii functional, the asymptotic stability and position and force tracking performance of the teleoperation system are established under specific conditions on the controller parameters, actuator saturation characteristics and maximum allowable time delay. The validity of the theoretical results is corroborated by the simulation results.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive control for position and force tracking of uncertain teleoperation with actuators saturation and asymmetric varying time delays\",\"authors\":\"M. Pourseifi, S. Rezaei\",\"doi\":\"10.1515/ijnsns-2021-0429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a new bounded force feedback control law to improve transparency in nonlinear bilateral teleoperation systems in the presence of three problems in practical applications of teleoperation systems such as input saturation, asymmetric time varying communication delays with no restriction on their rates of variation and parametric uncertainties, simultaneously. The proposed controller is a nonlinear-proportional plus nonlinear damping (nP + nD) controller with the addition of a nonlinear adaptive term and nonlinear function of the environment force on the slave side and nonlinear function of the human force and force error on the master side. Using a novel Lyapunov–Krasovskii functional, the asymptotic stability and position and force tracking performance of the teleoperation system are established under specific conditions on the controller parameters, actuator saturation characteristics and maximum allowable time delay. The validity of the theoretical results is corroborated by the simulation results.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0429\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0429","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Adaptive control for position and force tracking of uncertain teleoperation with actuators saturation and asymmetric varying time delays
Abstract This paper presents a new bounded force feedback control law to improve transparency in nonlinear bilateral teleoperation systems in the presence of three problems in practical applications of teleoperation systems such as input saturation, asymmetric time varying communication delays with no restriction on their rates of variation and parametric uncertainties, simultaneously. The proposed controller is a nonlinear-proportional plus nonlinear damping (nP + nD) controller with the addition of a nonlinear adaptive term and nonlinear function of the environment force on the slave side and nonlinear function of the human force and force error on the master side. Using a novel Lyapunov–Krasovskii functional, the asymptotic stability and position and force tracking performance of the teleoperation system are established under specific conditions on the controller parameters, actuator saturation characteristics and maximum allowable time delay. The validity of the theoretical results is corroborated by the simulation results.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.