{"title":"斑马鱼心脏发育模型的生物力学研究","authors":"Tanveer Teranikar, Phuc Nguyen, Juhyun Lee","doi":"10.1016/j.cobme.2023.100459","DOIUrl":null,"url":null,"abstract":"<div><p>Zebrafish (<em>Danio rerio</em>) larvae are emerging as high-throughput, chemical screening assays for investigating congenital cardiomyopathies. Despite distinct anatomical and genomic differences with humans, zebrafish share a conserved regulatory network of transcription factors modulating heart development with mammals. Consequently, external embryonic fertilization and optical transparency in conjunction with fluorescent reporters localizing endogenous proteins provide an ideal platform for studying molecular mechanisms underlying complex human heart development. In this regard, recent advances in light sheet microscopy (LSM) have enabled non-invasive, <em>in vivo</em> reconstruction of dynamic cardiac biomarkers during early stages of embryonic zebrafish heart development. In this review, we discuss the development of cardiovascular disease progression pipelines using zebrafish and LSM to identify genetic and molecular drivers of human cardiac disease.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"27 ","pages":"Article 100459"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biomechanics of cardiac development in zebrafish model\",\"authors\":\"Tanveer Teranikar, Phuc Nguyen, Juhyun Lee\",\"doi\":\"10.1016/j.cobme.2023.100459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zebrafish (<em>Danio rerio</em>) larvae are emerging as high-throughput, chemical screening assays for investigating congenital cardiomyopathies. Despite distinct anatomical and genomic differences with humans, zebrafish share a conserved regulatory network of transcription factors modulating heart development with mammals. Consequently, external embryonic fertilization and optical transparency in conjunction with fluorescent reporters localizing endogenous proteins provide an ideal platform for studying molecular mechanisms underlying complex human heart development. In this regard, recent advances in light sheet microscopy (LSM) have enabled non-invasive, <em>in vivo</em> reconstruction of dynamic cardiac biomarkers during early stages of embryonic zebrafish heart development. In this review, we discuss the development of cardiovascular disease progression pipelines using zebrafish and LSM to identify genetic and molecular drivers of human cardiac disease.</p></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":\"27 \",\"pages\":\"Article 100459\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468451123000156\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451123000156","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Biomechanics of cardiac development in zebrafish model
Zebrafish (Danio rerio) larvae are emerging as high-throughput, chemical screening assays for investigating congenital cardiomyopathies. Despite distinct anatomical and genomic differences with humans, zebrafish share a conserved regulatory network of transcription factors modulating heart development with mammals. Consequently, external embryonic fertilization and optical transparency in conjunction with fluorescent reporters localizing endogenous proteins provide an ideal platform for studying molecular mechanisms underlying complex human heart development. In this regard, recent advances in light sheet microscopy (LSM) have enabled non-invasive, in vivo reconstruction of dynamic cardiac biomarkers during early stages of embryonic zebrafish heart development. In this review, we discuss the development of cardiovascular disease progression pipelines using zebrafish and LSM to identify genetic and molecular drivers of human cardiac disease.