内接矩形重合

IF 0.5 4区 数学 Q3 MATHEMATICS
R. Schwartz
{"title":"内接矩形重合","authors":"R. Schwartz","doi":"10.1515/advgeom-2021-0012","DOIUrl":null,"url":null,"abstract":"Abstract We prove an integral formula for continuous paths of rectangles inscribed in a piecewise smooth loop. We use this integral formula to prove the inequality M(γ) ≥ Δ(γ)/2 – 1, where M(γ) denotes the total multiplicity of rectangle coincidences, i.e. pairs, triples, etc. of isometric rectangles inscribed in γ, and Δ(γ) denotes the number of stable diameters of γ, i.e. critical points of the distance function on γ.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/advgeom-2021-0012","citationCount":"2","resultStr":"{\"title\":\"Inscribed rectangle coincidences\",\"authors\":\"R. Schwartz\",\"doi\":\"10.1515/advgeom-2021-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove an integral formula for continuous paths of rectangles inscribed in a piecewise smooth loop. We use this integral formula to prove the inequality M(γ) ≥ Δ(γ)/2 – 1, where M(γ) denotes the total multiplicity of rectangle coincidences, i.e. pairs, triples, etc. of isometric rectangles inscribed in γ, and Δ(γ) denotes the number of stable diameters of γ, i.e. critical points of the distance function on γ.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/advgeom-2021-0012\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2021-0012\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要我们证明了一个关于矩形连续路径的积分公式。我们用这个积分公式证明了不等式M(γ)≥Δ(γ)/2–1,其中M(γ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inscribed rectangle coincidences
Abstract We prove an integral formula for continuous paths of rectangles inscribed in a piecewise smooth loop. We use this integral formula to prove the inequality M(γ) ≥ Δ(γ)/2 – 1, where M(γ) denotes the total multiplicity of rectangle coincidences, i.e. pairs, triples, etc. of isometric rectangles inscribed in γ, and Δ(γ) denotes the number of stable diameters of γ, i.e. critical points of the distance function on γ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信