{"title":"印度喀拉拉邦西流河流的动态洪水频率分析","authors":"Meera G. Mohan, S. Adarsh","doi":"10.1016/j.wasec.2023.100137","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional Flood Frequency Analysis (FFA) may underestimate flood quantiles and increase hydraulic infrastructure vulnerability in changing climates. This study uses annual maximum streamflow data from 17 hydrologic stations along west-flowing rivers in Kerala, India, for Non-Stationary (NS) FFA. The Generalized Extreme Value model with a linear temporal location parameter worked effectively for five stations. Kidangoor and Pattazhy stations must account for non-stationarity for longer return periods (RPs) (>50 years), whereas Neeleeswaram and Perumannu stations must for shorter RPs (<50 years). An extensive study was conducted for Neeleswaram station (Periyar basin) by simulating NS models incorporating four large-scale climate oscillations as covariates. The stationary assumption underestimated flood return levels of 2-year RP by about 61% which increases the flood risk leading to failure of hydraulic infrastructures. It was observed that the best fitted climate-based NS model achieves stationary return level of 150-years RP at 25-years RP itself. The study proved that the climate-based NS models captured the 2018 August Floods in Periyar basin better than stationary and time-based models. The regional variability in FF curve behaviour concludes that NSFFA for Kerala cannot be generalised and must be done at a local-scale.</p></div>","PeriodicalId":37308,"journal":{"name":"Water Security","volume":"19 ","pages":"Article 100137"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic flood frequency analysis for west flowing rivers of Kerala, India\",\"authors\":\"Meera G. Mohan, S. Adarsh\",\"doi\":\"10.1016/j.wasec.2023.100137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conventional Flood Frequency Analysis (FFA) may underestimate flood quantiles and increase hydraulic infrastructure vulnerability in changing climates. This study uses annual maximum streamflow data from 17 hydrologic stations along west-flowing rivers in Kerala, India, for Non-Stationary (NS) FFA. The Generalized Extreme Value model with a linear temporal location parameter worked effectively for five stations. Kidangoor and Pattazhy stations must account for non-stationarity for longer return periods (RPs) (>50 years), whereas Neeleeswaram and Perumannu stations must for shorter RPs (<50 years). An extensive study was conducted for Neeleswaram station (Periyar basin) by simulating NS models incorporating four large-scale climate oscillations as covariates. The stationary assumption underestimated flood return levels of 2-year RP by about 61% which increases the flood risk leading to failure of hydraulic infrastructures. It was observed that the best fitted climate-based NS model achieves stationary return level of 150-years RP at 25-years RP itself. The study proved that the climate-based NS models captured the 2018 August Floods in Periyar basin better than stationary and time-based models. The regional variability in FF curve behaviour concludes that NSFFA for Kerala cannot be generalised and must be done at a local-scale.</p></div>\",\"PeriodicalId\":37308,\"journal\":{\"name\":\"Water Security\",\"volume\":\"19 \",\"pages\":\"Article 100137\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468312423000056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Security","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468312423000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Dynamic flood frequency analysis for west flowing rivers of Kerala, India
Conventional Flood Frequency Analysis (FFA) may underestimate flood quantiles and increase hydraulic infrastructure vulnerability in changing climates. This study uses annual maximum streamflow data from 17 hydrologic stations along west-flowing rivers in Kerala, India, for Non-Stationary (NS) FFA. The Generalized Extreme Value model with a linear temporal location parameter worked effectively for five stations. Kidangoor and Pattazhy stations must account for non-stationarity for longer return periods (RPs) (>50 years), whereas Neeleeswaram and Perumannu stations must for shorter RPs (<50 years). An extensive study was conducted for Neeleswaram station (Periyar basin) by simulating NS models incorporating four large-scale climate oscillations as covariates. The stationary assumption underestimated flood return levels of 2-year RP by about 61% which increases the flood risk leading to failure of hydraulic infrastructures. It was observed that the best fitted climate-based NS model achieves stationary return level of 150-years RP at 25-years RP itself. The study proved that the climate-based NS models captured the 2018 August Floods in Periyar basin better than stationary and time-based models. The regional variability in FF curve behaviour concludes that NSFFA for Kerala cannot be generalised and must be done at a local-scale.
期刊介绍:
Water Security aims to publish papers that contribute to a better understanding of the economic, social, biophysical, technological, and institutional influencers of current and future global water security. At the same time the journal intends to stimulate debate, backed by science, with strong interdisciplinary connections. The goal is to publish concise and timely reviews and synthesis articles about research covering the following elements of water security: -Shortage- Flooding- Governance- Health and Sanitation