{"title":"基于vMF-WSAE动态深度学习的多模式转炉炼钢终点含碳量和温度软测量方法","authors":"Luan Yang, Hui Liu, Fugang Chen","doi":"10.1515/htmp-2022-0270","DOIUrl":null,"url":null,"abstract":"Abstract The difficulty of endpoint determination in basic oxygen furnace (BOF) steelmaking lies in achieving accurate real-time measurements of carbon content and temperature. For the characteristics of serious nonlinearity between process data, deep learning can perform excellent nonlinear feature representation for complex structural data. However, there is a process drift phenomenon in BOF steelmaking, and the existing deep learning-based soft sensor models cannot adapt to changes in the characteristics of samples, which may lead to their performance degradation. To deal with this problem, considering the characteristics of multimode distribution of process data, an adaptive updating deep learning model based on von-Mises Fisher (vMF) mixture model and weighted stacked autoencoder is proposed. First, the stacked autoencoder (SAE) and vMF mixture model are constructed for complex structural data, which can initially establish nonlinear mapping relationships and division of different distributions. Second, for each query sample, the basic SAE network will perform online adaptive fine-tuning according to its data with the same distribution to achieve dynamic updating. Moreover, each sample is assigned a weight according to its similarity with the query sample. Through the designed weighted loss function, the updated deep network will better match the working conditions of the query sample. Experimental studies with numerical examples and actual BOF steelmaking process data are provided to demonstrate the effectiveness of the proposed method.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Soft sensor method of multimode BOF steelmaking endpoint carbon content and temperature based on vMF-WSAE dynamic deep learning\",\"authors\":\"Luan Yang, Hui Liu, Fugang Chen\",\"doi\":\"10.1515/htmp-2022-0270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The difficulty of endpoint determination in basic oxygen furnace (BOF) steelmaking lies in achieving accurate real-time measurements of carbon content and temperature. For the characteristics of serious nonlinearity between process data, deep learning can perform excellent nonlinear feature representation for complex structural data. However, there is a process drift phenomenon in BOF steelmaking, and the existing deep learning-based soft sensor models cannot adapt to changes in the characteristics of samples, which may lead to their performance degradation. To deal with this problem, considering the characteristics of multimode distribution of process data, an adaptive updating deep learning model based on von-Mises Fisher (vMF) mixture model and weighted stacked autoencoder is proposed. First, the stacked autoencoder (SAE) and vMF mixture model are constructed for complex structural data, which can initially establish nonlinear mapping relationships and division of different distributions. Second, for each query sample, the basic SAE network will perform online adaptive fine-tuning according to its data with the same distribution to achieve dynamic updating. Moreover, each sample is assigned a weight according to its similarity with the query sample. Through the designed weighted loss function, the updated deep network will better match the working conditions of the query sample. Experimental studies with numerical examples and actual BOF steelmaking process data are provided to demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":12966,\"journal\":{\"name\":\"High Temperature Materials and Processes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature Materials and Processes\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/htmp-2022-0270\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature Materials and Processes","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/htmp-2022-0270","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Soft sensor method of multimode BOF steelmaking endpoint carbon content and temperature based on vMF-WSAE dynamic deep learning
Abstract The difficulty of endpoint determination in basic oxygen furnace (BOF) steelmaking lies in achieving accurate real-time measurements of carbon content and temperature. For the characteristics of serious nonlinearity between process data, deep learning can perform excellent nonlinear feature representation for complex structural data. However, there is a process drift phenomenon in BOF steelmaking, and the existing deep learning-based soft sensor models cannot adapt to changes in the characteristics of samples, which may lead to their performance degradation. To deal with this problem, considering the characteristics of multimode distribution of process data, an adaptive updating deep learning model based on von-Mises Fisher (vMF) mixture model and weighted stacked autoencoder is proposed. First, the stacked autoencoder (SAE) and vMF mixture model are constructed for complex structural data, which can initially establish nonlinear mapping relationships and division of different distributions. Second, for each query sample, the basic SAE network will perform online adaptive fine-tuning according to its data with the same distribution to achieve dynamic updating. Moreover, each sample is assigned a weight according to its similarity with the query sample. Through the designed weighted loss function, the updated deep network will better match the working conditions of the query sample. Experimental studies with numerical examples and actual BOF steelmaking process data are provided to demonstrate the effectiveness of the proposed method.
期刊介绍:
High Temperature Materials and Processes offers an international publication forum for new ideas, insights and results related to high-temperature materials and processes in science and technology. The journal publishes original research papers and short communications addressing topics at the forefront of high-temperature materials research including processing of various materials at high temperatures. Occasionally, reviews of a specific topic are included. The journal also publishes special issues featuring ongoing research programs as well as symposia of high-temperature materials and processes, and other related research activities.
Emphasis is placed on the multi-disciplinary nature of high-temperature materials and processes for various materials in a variety of states. Such a nature of the journal will help readers who wish to become acquainted with related subjects by obtaining information of various aspects of high-temperature materials research. The increasing spread of information on these subjects will also help to shed light on relevant topics of high-temperature materials and processes outside of readers’ own core specialties.