{"title":"山地固定翼无人机最优低空飞行轨迹生成","authors":"H. Maghsoudi, Amirreza Kosari Kosari","doi":"10.3846/aviation.2021.13291","DOIUrl":null,"url":null,"abstract":"In this study, the three-dimensional optimal trajectory planning of an unmanned fixed-wing aerial vehicle was investigated for Terrain Following – Terrain Avoidance (TF-TA) purposes using the Direct Collocation method. For this purpose, firstly, the appropriate equations representing the translational movement of the aircraft were described. The three-dimensional optimal trajectory planning of the flying vehicle was formulated in the TF-TA manoeuvre as an optimal control problem. The terrain profile, as the main allowable height constraint was modelled using the Fractal Generation Method. The resulting optimal control problem was discretized by applying the Direct Collocation numerical technique and then, was transformed into a Nonlinear Programming Problem (NLP). The efficacy of the proposed method was demonstrated by extensive simulations, and it was particularly verified that the purposed approach can produce a solution satisfying almost all the performance and environmental constraints encountering in a low -altitude flight.","PeriodicalId":51910,"journal":{"name":"Aviation","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GENERATION OF AN OPTIMAL LOW-ALTITUDE TRAJECTORY FOR A FIXED-WING UNMANNED AERIAL VEHICLE IN A MOUNTAINOUS AREA\",\"authors\":\"H. Maghsoudi, Amirreza Kosari Kosari\",\"doi\":\"10.3846/aviation.2021.13291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the three-dimensional optimal trajectory planning of an unmanned fixed-wing aerial vehicle was investigated for Terrain Following – Terrain Avoidance (TF-TA) purposes using the Direct Collocation method. For this purpose, firstly, the appropriate equations representing the translational movement of the aircraft were described. The three-dimensional optimal trajectory planning of the flying vehicle was formulated in the TF-TA manoeuvre as an optimal control problem. The terrain profile, as the main allowable height constraint was modelled using the Fractal Generation Method. The resulting optimal control problem was discretized by applying the Direct Collocation numerical technique and then, was transformed into a Nonlinear Programming Problem (NLP). The efficacy of the proposed method was demonstrated by extensive simulations, and it was particularly verified that the purposed approach can produce a solution satisfying almost all the performance and environmental constraints encountering in a low -altitude flight.\",\"PeriodicalId\":51910,\"journal\":{\"name\":\"Aviation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aviation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/aviation.2021.13291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/aviation.2021.13291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
GENERATION OF AN OPTIMAL LOW-ALTITUDE TRAJECTORY FOR A FIXED-WING UNMANNED AERIAL VEHICLE IN A MOUNTAINOUS AREA
In this study, the three-dimensional optimal trajectory planning of an unmanned fixed-wing aerial vehicle was investigated for Terrain Following – Terrain Avoidance (TF-TA) purposes using the Direct Collocation method. For this purpose, firstly, the appropriate equations representing the translational movement of the aircraft were described. The three-dimensional optimal trajectory planning of the flying vehicle was formulated in the TF-TA manoeuvre as an optimal control problem. The terrain profile, as the main allowable height constraint was modelled using the Fractal Generation Method. The resulting optimal control problem was discretized by applying the Direct Collocation numerical technique and then, was transformed into a Nonlinear Programming Problem (NLP). The efficacy of the proposed method was demonstrated by extensive simulations, and it was particularly verified that the purposed approach can produce a solution satisfying almost all the performance and environmental constraints encountering in a low -altitude flight.
期刊介绍:
CONCERNING THE FOLLOWING FIELDS OF RESEARCH: ▪ Flight Physics ▪ Air Traffic Management ▪ Aerostructures ▪ Airports ▪ Propulsion ▪ Human Factors ▪ Aircraft Avionics, Systems and Equipment ▪ Air Transport Technologies and Development ▪ Flight Mechanics ▪ History of Aviation ▪ Integrated Design and Validation (method and tools) Besides, it publishes: short reports and notes, reviews, reports about conferences and workshops