Sajithkumar K. Jayaprakash, Suchith Chellappan, Sruthi A. Prasannan, V. Padil
{"title":"菠萝果渣基纳米纤维复合材料:制备与表征","authors":"Sajithkumar K. Jayaprakash, Suchith Chellappan, Sruthi A. Prasannan, V. Padil","doi":"10.1515/epoly-2023-0094","DOIUrl":null,"url":null,"abstract":"Abstract Natural fibre composites are widespread for being eco-friendly and having unique properties. This study prepared nanocomposites by water evaporation using cellulose nanofibres (CNFs) as fillers and natural rubber (NR) latex as the matrix. Here, CNFs were extracted from the “pineapple fruit residue,” a waste material in juice industries. These fibre-reinforced nanocomposites were prepared under three different weight/volume percentages (5%, 10%, and 15%) and analysed for their mechanical and thermal properties. Furthermore, the morphology and distribution of CNFs in the NR matrix were examined by scanning electron microscopy and Fourier transform-infrared (FT-IR) analysis. The study found that CNFs were randomly oriented and evenly distributed in the nanocomposite. CNFs were detected by FT-IR spectroscopy in the NR matrix, as indicated by absorption peaks at 1,033 and 1,057 cm−1. Thermogravimetric analysis reveals increased thermal stability with more CNFs. Tensile strength and elastic modulus also increase. Pineapple fruit residue-based CNFs enhance mechanical and thermal properties of NR composites and can be considered an ideal natural reinforcing material.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pineapple fruit residue-based nanofibre composites: Preparation and characterizations\",\"authors\":\"Sajithkumar K. Jayaprakash, Suchith Chellappan, Sruthi A. Prasannan, V. Padil\",\"doi\":\"10.1515/epoly-2023-0094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Natural fibre composites are widespread for being eco-friendly and having unique properties. This study prepared nanocomposites by water evaporation using cellulose nanofibres (CNFs) as fillers and natural rubber (NR) latex as the matrix. Here, CNFs were extracted from the “pineapple fruit residue,” a waste material in juice industries. These fibre-reinforced nanocomposites were prepared under three different weight/volume percentages (5%, 10%, and 15%) and analysed for their mechanical and thermal properties. Furthermore, the morphology and distribution of CNFs in the NR matrix were examined by scanning electron microscopy and Fourier transform-infrared (FT-IR) analysis. The study found that CNFs were randomly oriented and evenly distributed in the nanocomposite. CNFs were detected by FT-IR spectroscopy in the NR matrix, as indicated by absorption peaks at 1,033 and 1,057 cm−1. Thermogravimetric analysis reveals increased thermal stability with more CNFs. Tensile strength and elastic modulus also increase. Pineapple fruit residue-based CNFs enhance mechanical and thermal properties of NR composites and can be considered an ideal natural reinforcing material.\",\"PeriodicalId\":11806,\"journal\":{\"name\":\"e-Polymers\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/epoly-2023-0094\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0094","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Pineapple fruit residue-based nanofibre composites: Preparation and characterizations
Abstract Natural fibre composites are widespread for being eco-friendly and having unique properties. This study prepared nanocomposites by water evaporation using cellulose nanofibres (CNFs) as fillers and natural rubber (NR) latex as the matrix. Here, CNFs were extracted from the “pineapple fruit residue,” a waste material in juice industries. These fibre-reinforced nanocomposites were prepared under three different weight/volume percentages (5%, 10%, and 15%) and analysed for their mechanical and thermal properties. Furthermore, the morphology and distribution of CNFs in the NR matrix were examined by scanning electron microscopy and Fourier transform-infrared (FT-IR) analysis. The study found that CNFs were randomly oriented and evenly distributed in the nanocomposite. CNFs were detected by FT-IR spectroscopy in the NR matrix, as indicated by absorption peaks at 1,033 and 1,057 cm−1. Thermogravimetric analysis reveals increased thermal stability with more CNFs. Tensile strength and elastic modulus also increase. Pineapple fruit residue-based CNFs enhance mechanical and thermal properties of NR composites and can be considered an ideal natural reinforcing material.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.