立方体曲面上测地线的分布

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-02-11 DOI:10.1112/mtk.12188
Yuxuan Yang
{"title":"立方体曲面上测地线的分布","authors":"Yuxuan Yang","doi":"10.1112/mtk.12188","DOIUrl":null,"url":null,"abstract":"<p>We establish a Kronecker–Weyl type result, on time-quantitative equidistribution for a natural non-integrable system, geodesic flow on the cube surface. Our tool is the shortline-ancestor method developed in Beck, Donders, and Yang [Acta Math. Hungar. <b>161</b> (2020), 66–184] and Beck, Donders, and Yang [Acta Math. Hungar. <i>162</i> (2020), 220–324], modified in an appropriate way to embrace all slopes. The method is further enhanced by the symmetry of the cube through the use of the irreducible representations of the symmetric group <i>S</i><sub>4</sub> which makes the determination of the irregularity exponent substantially simpler.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The distribution of geodesics on the cube surface\",\"authors\":\"Yuxuan Yang\",\"doi\":\"10.1112/mtk.12188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish a Kronecker–Weyl type result, on time-quantitative equidistribution for a natural non-integrable system, geodesic flow on the cube surface. Our tool is the shortline-ancestor method developed in Beck, Donders, and Yang [Acta Math. Hungar. <b>161</b> (2020), 66–184] and Beck, Donders, and Yang [Acta Math. Hungar. <i>162</i> (2020), 220–324], modified in an appropriate way to embrace all slopes. The method is further enhanced by the symmetry of the cube through the use of the irreducible representations of the symmetric group <i>S</i><sub>4</sub> which makes the determination of the irregularity exponent substantially simpler.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12188\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12188","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个Kronecker–Weyl型结果,关于自然不可积系统的时间定量等分布,即立方体表面上的测地流。我们的工具是Beck、Donders和Yang[Acta Math.Hungar.161(2020),66–184]以及Beck、Donders和Young[Acta数学.Hungar162(2020)、220–324]开发的短线祖先方法,以适当的方式进行了修改,以包含所有斜率。通过使用对称群S4的不可约表示,立方体的对称性进一步增强了该方法,这使得不规则指数的确定基本上更简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The distribution of geodesics on the cube surface

We establish a Kronecker–Weyl type result, on time-quantitative equidistribution for a natural non-integrable system, geodesic flow on the cube surface. Our tool is the shortline-ancestor method developed in Beck, Donders, and Yang [Acta Math. Hungar. 161 (2020), 66–184] and Beck, Donders, and Yang [Acta Math. Hungar. 162 (2020), 220–324], modified in an appropriate way to embrace all slopes. The method is further enhanced by the symmetry of the cube through the use of the irreducible representations of the symmetric group S4 which makes the determination of the irregularity exponent substantially simpler.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信