生物细胞的分选和操作以及使用光力的前景

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY
Arslan Atajanov, Alexander Zhbanov, Sung Yang
{"title":"生物细胞的分选和操作以及使用光力的前景","authors":"Arslan Atajanov,&nbsp;Alexander Zhbanov,&nbsp;Sung Yang","doi":"10.1186/s40486-018-0064-3","DOIUrl":null,"url":null,"abstract":"<p>Contemporary biomedical research requires development of novel techniques for sorting and manipulation of cells within the framework of a microfluidic chip. The desired functions of a microfluidic chip are achieved by combining and integrating passive methods that utilize the channel geometry and structure, as well as active methods that include magnetic, electrical, acoustic and optical forces. Application of magnetic, electric and acoustics-based methods for sorting and manipulation have been and are under continuous scrutiny. Optics-based methods, in contrast, have not been explored to the same extent as other methods, since they attracted insufficient attention. This is due to the complicated, expensive and bulky setup required for carrying out such studies. However, advances in optical beam shaping and computer hardware, and software have opened up new opportunities for application of light to development of advanced sorting and manipulation techniques. This review outlines contemporary techniques for cell sorting and manipulation, and provides an in-depth view into the existing and prospective uses of light for cell sorting and manipulation.</p>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"6 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2018-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40486-018-0064-3","citationCount":"35","resultStr":"{\"title\":\"Sorting and manipulation of biological cells and the prospects for using optical forces\",\"authors\":\"Arslan Atajanov,&nbsp;Alexander Zhbanov,&nbsp;Sung Yang\",\"doi\":\"10.1186/s40486-018-0064-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Contemporary biomedical research requires development of novel techniques for sorting and manipulation of cells within the framework of a microfluidic chip. The desired functions of a microfluidic chip are achieved by combining and integrating passive methods that utilize the channel geometry and structure, as well as active methods that include magnetic, electrical, acoustic and optical forces. Application of magnetic, electric and acoustics-based methods for sorting and manipulation have been and are under continuous scrutiny. Optics-based methods, in contrast, have not been explored to the same extent as other methods, since they attracted insufficient attention. This is due to the complicated, expensive and bulky setup required for carrying out such studies. However, advances in optical beam shaping and computer hardware, and software have opened up new opportunities for application of light to development of advanced sorting and manipulation techniques. This review outlines contemporary techniques for cell sorting and manipulation, and provides an in-depth view into the existing and prospective uses of light for cell sorting and manipulation.</p>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2018-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40486-018-0064-3\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-018-0064-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-018-0064-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 35

摘要

当代生物医学研究需要在微流控芯片框架内开发新的细胞分选和操作技术。通过结合和集成利用通道几何和结构的被动方法以及包括磁、电、声和光力在内的主动方法,实现了微流控芯片的所需功能。基于磁、电和声学的分类和操作方法的应用已经并且正在受到不断的审查。相比之下,基于光学的方法还没有像其他方法那样被探索到同样的程度,因为它们引起的关注不够。这是由于进行此类研究所需的复杂、昂贵和笨重的装置。然而,光束整形和计算机硬件和软件的进步为光的应用开发先进的分选和操作技术开辟了新的机会。这篇综述概述了当代的细胞分选和操作技术,并提供了一个深入的观点,光在细胞分选和操作的现有和未来的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sorting and manipulation of biological cells and the prospects for using optical forces

Sorting and manipulation of biological cells and the prospects for using optical forces

Contemporary biomedical research requires development of novel techniques for sorting and manipulation of cells within the framework of a microfluidic chip. The desired functions of a microfluidic chip are achieved by combining and integrating passive methods that utilize the channel geometry and structure, as well as active methods that include magnetic, electrical, acoustic and optical forces. Application of magnetic, electric and acoustics-based methods for sorting and manipulation have been and are under continuous scrutiny. Optics-based methods, in contrast, have not been explored to the same extent as other methods, since they attracted insufficient attention. This is due to the complicated, expensive and bulky setup required for carrying out such studies. However, advances in optical beam shaping and computer hardware, and software have opened up new opportunities for application of light to development of advanced sorting and manipulation techniques. This review outlines contemporary techniques for cell sorting and manipulation, and provides an in-depth view into the existing and prospective uses of light for cell sorting and manipulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信