水力裂缝驱动非穿透性裂纹平面孔弹性模型的渐近级数解

IF 2.2 Q2 ENGINEERING, MULTIDISCIPLINARY
Hiromichi Itou , Victor A. Kovtunenko , Nyurgun P. Lazarev
{"title":"水力裂缝驱动非穿透性裂纹平面孔弹性模型的渐近级数解","authors":"Hiromichi Itou ,&nbsp;Victor A. Kovtunenko ,&nbsp;Nyurgun P. Lazarev","doi":"10.1016/j.apples.2022.100089","DOIUrl":null,"url":null,"abstract":"<div><p>A new class of coupled poroelastic problems describing fluid-driven cracks (called fractures) subjected to non-penetration conditions between opposite crack faces (fracture walls) is considered in the incremental form. The nonlinear crack problem for a plane isotropic setting in a two-phase medium is expressed in polar coordinates as a variational inequality with respect to the solid phase displacement and the pore pressure. Applying nonlinear methods, the asymptotic theory and Fourier analysis, a semi-analytic solution given as the power series in the sector of angle <span><math><mrow><mn>2</mn><mi>π</mi></mrow></math></span> is proven using rigorous expansions with respect to the distance to the crack-tip. Here no logarithmic terms occur in the asymptotic expansion. Consequently, a square-root singularity for the poroelastic medium with a non-penetrating crack is derived, and the integral formulas for calculating the corresponding stress intensity factors are obtained.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"10 ","pages":"Article 100089"},"PeriodicalIF":2.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496822000085/pdfft?md5=d2ed601635ee412cb9d97f852722fd3e&pid=1-s2.0-S2666496822000085-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Asymptotic series solution for plane poroelastic model with non-penetrating crack driven by hydraulic fracture\",\"authors\":\"Hiromichi Itou ,&nbsp;Victor A. Kovtunenko ,&nbsp;Nyurgun P. Lazarev\",\"doi\":\"10.1016/j.apples.2022.100089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new class of coupled poroelastic problems describing fluid-driven cracks (called fractures) subjected to non-penetration conditions between opposite crack faces (fracture walls) is considered in the incremental form. The nonlinear crack problem for a plane isotropic setting in a two-phase medium is expressed in polar coordinates as a variational inequality with respect to the solid phase displacement and the pore pressure. Applying nonlinear methods, the asymptotic theory and Fourier analysis, a semi-analytic solution given as the power series in the sector of angle <span><math><mrow><mn>2</mn><mi>π</mi></mrow></math></span> is proven using rigorous expansions with respect to the distance to the crack-tip. Here no logarithmic terms occur in the asymptotic expansion. Consequently, a square-root singularity for the poroelastic medium with a non-penetrating crack is derived, and the integral formulas for calculating the corresponding stress intensity factors are obtained.</p></div>\",\"PeriodicalId\":72251,\"journal\":{\"name\":\"Applications in engineering science\",\"volume\":\"10 \",\"pages\":\"Article 100089\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666496822000085/pdfft?md5=d2ed601635ee412cb9d97f852722fd3e&pid=1-s2.0-S2666496822000085-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in engineering science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666496822000085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in engineering science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666496822000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

以增量形式考虑了一类新的耦合孔隙弹性问题,该问题描述了相对裂缝面(裂缝壁)之间受非穿透条件影响的流体驱动裂缝(称为裂缝)。平面各向同性两相介质的非线性裂纹问题在极坐标中表示为关于固相位移和孔隙压力的变分不等式。应用非线性方法、渐近理论和傅立叶分析,用关于裂纹尖端距离的严格展开式证明了角2π扇形上幂级数的半解析解。这里的渐近展开式中没有对数项。由此推导了含非穿透性裂纹的多孔弹性介质的平方根奇异性,并得到了相应应力强度因子的积分计算公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic series solution for plane poroelastic model with non-penetrating crack driven by hydraulic fracture

A new class of coupled poroelastic problems describing fluid-driven cracks (called fractures) subjected to non-penetration conditions between opposite crack faces (fracture walls) is considered in the incremental form. The nonlinear crack problem for a plane isotropic setting in a two-phase medium is expressed in polar coordinates as a variational inequality with respect to the solid phase displacement and the pore pressure. Applying nonlinear methods, the asymptotic theory and Fourier analysis, a semi-analytic solution given as the power series in the sector of angle 2π is proven using rigorous expansions with respect to the distance to the crack-tip. Here no logarithmic terms occur in the asymptotic expansion. Consequently, a square-root singularity for the poroelastic medium with a non-penetrating crack is derived, and the integral formulas for calculating the corresponding stress intensity factors are obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applications in engineering science
Applications in engineering science Mechanical Engineering
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
68 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信