氧和氧相关细胞应激的流式细胞术

B. Jávega, Guadalupe Herrera, A. Martínez-Romero, J. O'connor
{"title":"氧和氧相关细胞应激的流式细胞术","authors":"B. Jávega, Guadalupe Herrera, A. Martínez-Romero, J. O'connor","doi":"10.3390/oxygen3020016","DOIUrl":null,"url":null,"abstract":"Reactive oxygen species (ROS) are unstable and highly reactive molecular forms that play physiological roles in cell signaling and immune defense. However, when ROS generation is not properly balanced by antioxidant defenses, a pathological condition known as oxidative stress arises, in association with the onset and progression of many diseases and conditions, including degeneration and aging. Biomarkers of oxidative stress in biomedicine are actively investigated using different approaches, among which flow cytometry (FCM) and other single-cell, fluorescence-based techniques are most frequent. FCM is an analytical method that measures light scattering and emission of multiple fluorescences by single cells or microscopic particles at a very fast rate. To assess the specific role of ROS in oxidative stress, it is essential to detect and characterize these species accurately. However, the detection and quantitation of individual intracellular ROS and parameters of oxidative stress using fluorogenic substrates and fluorescent probes are still a challenge, because of biological and methodological issues. In this review, we present and discuss a series of complementary strategies to detect ROS or to focus on other endpoints of oxidative stress. Based on our results, we propose some recommendations for proper design of cytometric studies of oxidative stress in order to prevent or minimize the limitations and experimental errors of such approaches.","PeriodicalId":74387,"journal":{"name":"Oxygen (Basel, Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flow Cytometry of Oxygen and Oxygen-Related Cellular Stress\",\"authors\":\"B. Jávega, Guadalupe Herrera, A. Martínez-Romero, J. O'connor\",\"doi\":\"10.3390/oxygen3020016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reactive oxygen species (ROS) are unstable and highly reactive molecular forms that play physiological roles in cell signaling and immune defense. However, when ROS generation is not properly balanced by antioxidant defenses, a pathological condition known as oxidative stress arises, in association with the onset and progression of many diseases and conditions, including degeneration and aging. Biomarkers of oxidative stress in biomedicine are actively investigated using different approaches, among which flow cytometry (FCM) and other single-cell, fluorescence-based techniques are most frequent. FCM is an analytical method that measures light scattering and emission of multiple fluorescences by single cells or microscopic particles at a very fast rate. To assess the specific role of ROS in oxidative stress, it is essential to detect and characterize these species accurately. However, the detection and quantitation of individual intracellular ROS and parameters of oxidative stress using fluorogenic substrates and fluorescent probes are still a challenge, because of biological and methodological issues. In this review, we present and discuss a series of complementary strategies to detect ROS or to focus on other endpoints of oxidative stress. Based on our results, we propose some recommendations for proper design of cytometric studies of oxidative stress in order to prevent or minimize the limitations and experimental errors of such approaches.\",\"PeriodicalId\":74387,\"journal\":{\"name\":\"Oxygen (Basel, Switzerland)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxygen (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/oxygen3020016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxygen (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/oxygen3020016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

活性氧(ROS)是一种不稳定的高活性分子形式,在细胞信号传导和免疫防御中发挥生理作用。然而,当ROS的产生不能通过抗氧化防御得到适当的平衡时,一种称为氧化应激的病理状况就会出现,与许多疾病和病症的发生和进展有关,包括变性和衰老。生物医学中氧化应激的生物标志物正在使用不同的方法进行积极的研究,其中流式细胞术(FCM)和其他单细胞、荧光技术最为常见。FCM是以非常快的速度测量单个细胞或微观颗粒的光散射和多重荧光发射的分析方法。为了评估ROS在氧化应激中的具体作用,有必要准确地检测和表征这些物种。然而,由于生物学和方法学的问题,使用荧光底物和荧光探针检测和定量单个细胞内ROS和氧化应激参数仍然是一个挑战。在这篇综述中,我们提出并讨论了一系列互补的策略来检测ROS或关注氧化应激的其他终点。基于我们的研究结果,我们提出了一些建议,以正确设计氧化应激细胞分析研究,以防止或尽量减少这种方法的局限性和实验误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow Cytometry of Oxygen and Oxygen-Related Cellular Stress
Reactive oxygen species (ROS) are unstable and highly reactive molecular forms that play physiological roles in cell signaling and immune defense. However, when ROS generation is not properly balanced by antioxidant defenses, a pathological condition known as oxidative stress arises, in association with the onset and progression of many diseases and conditions, including degeneration and aging. Biomarkers of oxidative stress in biomedicine are actively investigated using different approaches, among which flow cytometry (FCM) and other single-cell, fluorescence-based techniques are most frequent. FCM is an analytical method that measures light scattering and emission of multiple fluorescences by single cells or microscopic particles at a very fast rate. To assess the specific role of ROS in oxidative stress, it is essential to detect and characterize these species accurately. However, the detection and quantitation of individual intracellular ROS and parameters of oxidative stress using fluorogenic substrates and fluorescent probes are still a challenge, because of biological and methodological issues. In this review, we present and discuss a series of complementary strategies to detect ROS or to focus on other endpoints of oxidative stress. Based on our results, we propose some recommendations for proper design of cytometric studies of oxidative stress in order to prevent or minimize the limitations and experimental errors of such approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信