高亏格中加权稳定曲线的热带模空间的拓扑

IF 0.5 4区 数学 Q3 MATHEMATICS
S. Kannan, Shiyue Li, S. Serpente, Claudia He Yun
{"title":"高亏格中加权稳定曲线的热带模空间的拓扑","authors":"S. Kannan, Shiyue Li, S. Serpente, Claudia He Yun","doi":"10.1515/advgeom-2023-0009","DOIUrl":null,"url":null,"abstract":"Abstract We study the topology of moduli spaces of weighted stable tropical curves Δg,w with fixed genus and unit volume. The space Δg,w arises as the dual complex of the divisor of singular curves in Hassett’s moduli space Mg,w of weighted stable curves. When the genus is positive, we show that Δg,w is simply connected for any choice of weight vector w. We also give a formula for the Euler characteristic of Δg,w in terms of the combinatorics of the weight vector.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"23 1","pages":"305 - 314"},"PeriodicalIF":0.5000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Topology of tropical moduli spaces of weighted stable curves in higher genus\",\"authors\":\"S. Kannan, Shiyue Li, S. Serpente, Claudia He Yun\",\"doi\":\"10.1515/advgeom-2023-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the topology of moduli spaces of weighted stable tropical curves Δg,w with fixed genus and unit volume. The space Δg,w arises as the dual complex of the divisor of singular curves in Hassett’s moduli space Mg,w of weighted stable curves. When the genus is positive, we show that Δg,w is simply connected for any choice of weight vector w. We also give a formula for the Euler characteristic of Δg,w in terms of the combinatorics of the weight vector.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"23 1\",\"pages\":\"305 - 314\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2023-0009\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

摘要研究了具有固定格和单位体积的加权稳定热带曲线Δg的模空间拓扑。空间Δg,w是加权稳定曲线的Hassett模空间Mg,w中奇异曲线的因子的对偶复形。当属为正时,我们证明Δg,w对于任何选择的权向量w都是单连通的。我们还根据权向量的组合给出了Δg,w的欧拉特性的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topology of tropical moduli spaces of weighted stable curves in higher genus
Abstract We study the topology of moduli spaces of weighted stable tropical curves Δg,w with fixed genus and unit volume. The space Δg,w arises as the dual complex of the divisor of singular curves in Hassett’s moduli space Mg,w of weighted stable curves. When the genus is positive, we show that Δg,w is simply connected for any choice of weight vector w. We also give a formula for the Euler characteristic of Δg,w in terms of the combinatorics of the weight vector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信