{"title":"Nazief和Adriani Stemming算法与PostgreSQL查询解析方法协作搜索新的研究项目名称","authors":"Indra Chaidir","doi":"10.24114/cess.v8i2.48212","DOIUrl":null,"url":null,"abstract":"Penolakan usulan nama baru program studi vokasi pada Aplikasi Silemkerma di Direktorat Jenderal Pendidikan Tinggi Vokasi, Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi sering terjadi karena terdapat kemiripan nama program studi yang diusulkan dengan nama program studi yang sudah ada di dalam basis data. Banyak data tidak ditemukan karena filter data menggunakan metode konvensional dalam kasus ini menggunakan operator ILIKE dengan pola wildcard character % (percent), sedangkan data yang dicari tersedia di dalam basis data. Ini terjadi dikarenakan operator ILIKE tidak dapat membaca perubahan kata dari leksem/akar kata (root word) seperti \"pengelolaan\" dengan memiliki prefix dan suffix, dengan akar kata \"kelola\". Mengatasi permasalahan ini, penulis memanfaatkan Algoritma Nazief & Adriani untuk stemming agar mendapatkan leksem dari kalimat yang dimasukan. Hasil algoritma tersebut terus diolah menggunakan Metode Parsing Queries, salah satu metode Full Text Search yang ada pada basis data PostgresQL. Hasil penelitian ini dapat diimplementasikan pada Aplikasi tersebut.Rejection of new vocational study program name proposals in Silemkerma Application at the Directorate General of Vocational Higher Education, Ministry of Education, Culture, Research, and Technology often occurs because there is a similarity between the proposed study program name and the existing study program name in the database. Many data are not found because the data filter uses conventional methods in this case using the ILIKE operator with the wildcard character pattern % (percent), while the data sought is available in the database. This is because the ILIKE operator cannot read word changes from lexemes/root words such as \"pengelolaan\" which has a prefix and suffix, with the root word \"kelola\". Overcoming this problem, the author utilizes the Nazief & Adriani Algorithm for stemming in order to get lexemes from the sentences entered. The results of the algorithm are then processed using the Parsing Queries Method, one of the Full Text Search methods available in the PostgresQL database. The results of this research can be implemented in the application.","PeriodicalId":53361,"journal":{"name":"CESS Journal of Computer Engineering System and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaboration of Nazief & Adriani Stemming Algorithm with PostgreSQL Queries Parsing Method to Search for New Study Program Names\",\"authors\":\"Indra Chaidir\",\"doi\":\"10.24114/cess.v8i2.48212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penolakan usulan nama baru program studi vokasi pada Aplikasi Silemkerma di Direktorat Jenderal Pendidikan Tinggi Vokasi, Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi sering terjadi karena terdapat kemiripan nama program studi yang diusulkan dengan nama program studi yang sudah ada di dalam basis data. Banyak data tidak ditemukan karena filter data menggunakan metode konvensional dalam kasus ini menggunakan operator ILIKE dengan pola wildcard character % (percent), sedangkan data yang dicari tersedia di dalam basis data. Ini terjadi dikarenakan operator ILIKE tidak dapat membaca perubahan kata dari leksem/akar kata (root word) seperti \\\"pengelolaan\\\" dengan memiliki prefix dan suffix, dengan akar kata \\\"kelola\\\". Mengatasi permasalahan ini, penulis memanfaatkan Algoritma Nazief & Adriani untuk stemming agar mendapatkan leksem dari kalimat yang dimasukan. Hasil algoritma tersebut terus diolah menggunakan Metode Parsing Queries, salah satu metode Full Text Search yang ada pada basis data PostgresQL. Hasil penelitian ini dapat diimplementasikan pada Aplikasi tersebut.Rejection of new vocational study program name proposals in Silemkerma Application at the Directorate General of Vocational Higher Education, Ministry of Education, Culture, Research, and Technology often occurs because there is a similarity between the proposed study program name and the existing study program name in the database. Many data are not found because the data filter uses conventional methods in this case using the ILIKE operator with the wildcard character pattern % (percent), while the data sought is available in the database. This is because the ILIKE operator cannot read word changes from lexemes/root words such as \\\"pengelolaan\\\" which has a prefix and suffix, with the root word \\\"kelola\\\". Overcoming this problem, the author utilizes the Nazief & Adriani Algorithm for stemming in order to get lexemes from the sentences entered. The results of the algorithm are then processed using the Parsing Queries Method, one of the Full Text Search methods available in the PostgresQL database. The results of this research can be implemented in the application.\",\"PeriodicalId\":53361,\"journal\":{\"name\":\"CESS Journal of Computer Engineering System and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CESS Journal of Computer Engineering System and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24114/cess.v8i2.48212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CESS Journal of Computer Engineering System and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/cess.v8i2.48212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Collaboration of Nazief & Adriani Stemming Algorithm with PostgreSQL Queries Parsing Method to Search for New Study Program Names
Penolakan usulan nama baru program studi vokasi pada Aplikasi Silemkerma di Direktorat Jenderal Pendidikan Tinggi Vokasi, Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi sering terjadi karena terdapat kemiripan nama program studi yang diusulkan dengan nama program studi yang sudah ada di dalam basis data. Banyak data tidak ditemukan karena filter data menggunakan metode konvensional dalam kasus ini menggunakan operator ILIKE dengan pola wildcard character % (percent), sedangkan data yang dicari tersedia di dalam basis data. Ini terjadi dikarenakan operator ILIKE tidak dapat membaca perubahan kata dari leksem/akar kata (root word) seperti "pengelolaan" dengan memiliki prefix dan suffix, dengan akar kata "kelola". Mengatasi permasalahan ini, penulis memanfaatkan Algoritma Nazief & Adriani untuk stemming agar mendapatkan leksem dari kalimat yang dimasukan. Hasil algoritma tersebut terus diolah menggunakan Metode Parsing Queries, salah satu metode Full Text Search yang ada pada basis data PostgresQL. Hasil penelitian ini dapat diimplementasikan pada Aplikasi tersebut.Rejection of new vocational study program name proposals in Silemkerma Application at the Directorate General of Vocational Higher Education, Ministry of Education, Culture, Research, and Technology often occurs because there is a similarity between the proposed study program name and the existing study program name in the database. Many data are not found because the data filter uses conventional methods in this case using the ILIKE operator with the wildcard character pattern % (percent), while the data sought is available in the database. This is because the ILIKE operator cannot read word changes from lexemes/root words such as "pengelolaan" which has a prefix and suffix, with the root word "kelola". Overcoming this problem, the author utilizes the Nazief & Adriani Algorithm for stemming in order to get lexemes from the sentences entered. The results of the algorithm are then processed using the Parsing Queries Method, one of the Full Text Search methods available in the PostgresQL database. The results of this research can be implemented in the application.