{"title":"有限建筑物的随机子复合体和直角Coxeter群的换向子群的纤维化","authors":"Eduard Schesler, Matthew C. B. Zaremsky","doi":"10.1112/topo.12278","DOIUrl":null,"url":null,"abstract":"<p>The main theme of this paper is higher virtual algebraic fibering properties of right-angled Coxeter groups (RACGs), with a special focus on those whose defining flag complex is a finite building. We prove for particular classes of finite buildings that their random induced subcomplexes have a number of strong properties, most prominently that they are highly connected. From this we are able to deduce that the commutator subgroup of a RACG, with defining flag complex a finite building of a certain type, admits an epimorphism to <math>\n <semantics>\n <mi>Z</mi>\n <annotation>$\\mathbb {Z}$</annotation>\n </semantics></math> whose kernel has strong topological finiteness properties. We additionally use our techniques to present examples where the kernel is of type <math>\n <semantics>\n <msub>\n <mo>F</mo>\n <mn>2</mn>\n </msub>\n <annotation>$\\operatorname{F}_2$</annotation>\n </semantics></math> but not <math>\n <semantics>\n <msub>\n <mo>FP</mo>\n <mn>3</mn>\n </msub>\n <annotation>$\\operatorname{FP}_3$</annotation>\n </semantics></math>, and examples where the RACG is hyperbolic and the kernel is finitely generated and non-hyperbolic. The key tool we use is a generalization of an approach due to Jankiewicz–Norin–Wise involving Bestvina–Brady discrete Morse theory applied to the Davis complex of a RACG, together with some probabilistic arguments.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Random subcomplexes of finite buildings, and fibering of commutator subgroups of right-angled Coxeter groups\",\"authors\":\"Eduard Schesler, Matthew C. B. Zaremsky\",\"doi\":\"10.1112/topo.12278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The main theme of this paper is higher virtual algebraic fibering properties of right-angled Coxeter groups (RACGs), with a special focus on those whose defining flag complex is a finite building. We prove for particular classes of finite buildings that their random induced subcomplexes have a number of strong properties, most prominently that they are highly connected. From this we are able to deduce that the commutator subgroup of a RACG, with defining flag complex a finite building of a certain type, admits an epimorphism to <math>\\n <semantics>\\n <mi>Z</mi>\\n <annotation>$\\\\mathbb {Z}$</annotation>\\n </semantics></math> whose kernel has strong topological finiteness properties. We additionally use our techniques to present examples where the kernel is of type <math>\\n <semantics>\\n <msub>\\n <mo>F</mo>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\operatorname{F}_2$</annotation>\\n </semantics></math> but not <math>\\n <semantics>\\n <msub>\\n <mo>FP</mo>\\n <mn>3</mn>\\n </msub>\\n <annotation>$\\\\operatorname{FP}_3$</annotation>\\n </semantics></math>, and examples where the RACG is hyperbolic and the kernel is finitely generated and non-hyperbolic. The key tool we use is a generalization of an approach due to Jankiewicz–Norin–Wise involving Bestvina–Brady discrete Morse theory applied to the Davis complex of a RACG, together with some probabilistic arguments.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Random subcomplexes of finite buildings, and fibering of commutator subgroups of right-angled Coxeter groups
The main theme of this paper is higher virtual algebraic fibering properties of right-angled Coxeter groups (RACGs), with a special focus on those whose defining flag complex is a finite building. We prove for particular classes of finite buildings that their random induced subcomplexes have a number of strong properties, most prominently that they are highly connected. From this we are able to deduce that the commutator subgroup of a RACG, with defining flag complex a finite building of a certain type, admits an epimorphism to whose kernel has strong topological finiteness properties. We additionally use our techniques to present examples where the kernel is of type but not , and examples where the RACG is hyperbolic and the kernel is finitely generated and non-hyperbolic. The key tool we use is a generalization of an approach due to Jankiewicz–Norin–Wise involving Bestvina–Brady discrete Morse theory applied to the Davis complex of a RACG, together with some probabilistic arguments.