带上磁性薛定谔算子的半经典近似:动力学和谱

IF 0.8 Q2 MATHEMATICS
M. Dimassi
{"title":"带上磁性薛定谔算子的半经典近似:动力学和谱","authors":"M. Dimassi","doi":"10.2140/TUNIS.2020.2.197","DOIUrl":null,"url":null,"abstract":"In the semiclassical regime (i.e., (cid:15) (cid:38) 0), we study the effect of a slowly varying potential V ((cid:15) t , (cid:15) z ) on the magnetic Schrödinger operator P = D 2 x + ( D z + µ x ) 2 on a strip [− a , a ] × (cid:82) z . The potential V ( t , z ) is assumed to be smooth. We derive the semiclassical dynamics and we describe the asymptotic structure of the spectrum and the resonances of the operator P + V ((cid:15) t , (cid:15) z ) for (cid:15) small enough. All our results depend on the eigenvalues corresponding to D 2 x + (µ x + k ) 2 on L 2 ( [− a , a ] ) with Dirichlet boundary condition. x ≤ a } . The Fourier transfor-mation with respect to z reduces the spectral problem of P to an analysis of the ( k depending) eigenvalues E 0 ( k ), E 1 ( k ), . . . of the Sturm-Liouville operator on the interval [− a , a ] with Dirichlet boundary condition at − a and a .","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/TUNIS.2020.2.197","citationCount":"0","resultStr":"{\"title\":\"Semiclassical approximation of the magnetic Schrödinger operator on a strip : dynamics and spectrum\",\"authors\":\"M. Dimassi\",\"doi\":\"10.2140/TUNIS.2020.2.197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the semiclassical regime (i.e., (cid:15) (cid:38) 0), we study the effect of a slowly varying potential V ((cid:15) t , (cid:15) z ) on the magnetic Schrödinger operator P = D 2 x + ( D z + µ x ) 2 on a strip [− a , a ] × (cid:82) z . The potential V ( t , z ) is assumed to be smooth. We derive the semiclassical dynamics and we describe the asymptotic structure of the spectrum and the resonances of the operator P + V ((cid:15) t , (cid:15) z ) for (cid:15) small enough. All our results depend on the eigenvalues corresponding to D 2 x + (µ x + k ) 2 on L 2 ( [− a , a ] ) with Dirichlet boundary condition. x ≤ a } . The Fourier transfor-mation with respect to z reduces the spectral problem of P to an analysis of the ( k depending) eigenvalues E 0 ( k ), E 1 ( k ), . . . of the Sturm-Liouville operator on the interval [− a , a ] with Dirichlet boundary condition at − a and a .\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/TUNIS.2020.2.197\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/TUNIS.2020.2.197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/TUNIS.2020.2.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在半经典区(即(cid:15) (cid:38) 0)中,我们研究了慢变电位V ((cid:15) t, (cid:15) z)对条带[- a, a] × (cid:82) z上的磁Schrödinger算符P = d2 x + (D z +µx) 2的影响。假设势能V (t, z)是光滑的。我们导出了半经典动力学,并描述了谱的渐近结构和算子P + V ((cid:15) t, (cid:15) z)在(cid:15)足够小时的共振。我们所有的结果都依赖于d2 +(µx + k) 2在l2([−a, a])上对应的特征值,并具有Dirichlet边界条件。X≤a}。关于z的傅里叶变换将P的频谱问题简化为(取决于k的)特征值e0 (k), e1 (k),…的分析。在- a和- a处具有Dirichlet边界条件的区间[- a, a]上Sturm-Liouville算子的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiclassical approximation of the magnetic Schrödinger operator on a strip : dynamics and spectrum
In the semiclassical regime (i.e., (cid:15) (cid:38) 0), we study the effect of a slowly varying potential V ((cid:15) t , (cid:15) z ) on the magnetic Schrödinger operator P = D 2 x + ( D z + µ x ) 2 on a strip [− a , a ] × (cid:82) z . The potential V ( t , z ) is assumed to be smooth. We derive the semiclassical dynamics and we describe the asymptotic structure of the spectrum and the resonances of the operator P + V ((cid:15) t , (cid:15) z ) for (cid:15) small enough. All our results depend on the eigenvalues corresponding to D 2 x + (µ x + k ) 2 on L 2 ( [− a , a ] ) with Dirichlet boundary condition. x ≤ a } . The Fourier transfor-mation with respect to z reduces the spectral problem of P to an analysis of the ( k depending) eigenvalues E 0 ( k ), E 1 ( k ), . . . of the Sturm-Liouville operator on the interval [− a , a ] with Dirichlet boundary condition at − a and a .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信