Raviram R, Sachithananthan J, Mohandass M, Gurusamy V
{"title":"输入参数对用田口法确定316L不锈钢熔覆焊缝形状的影响","authors":"Raviram R, Sachithananthan J, Mohandass M, Gurusamy V","doi":"10.12688/materialsopenres.17569.1","DOIUrl":null,"url":null,"abstract":"Background: The Cold Metal Transfer (CMT) process, with its low heat input, is selected for cladding carbon steel in demanding industries such as mining, oil, gas, offshore, steel, and metal. Limited research exists on the utilization of Taguchi's technique in welding and cladding processes. The main objective of the present research is to employ the Taguchi approach for determining the impact of CMT parameters on the cladding geometry of 316L stainless steel. Methods: The influence of process parameters on the weld bead was examined using both Signal-to-Noise (S/N) ratio and Analysis of Variance (ANOVA) by implementing an orthogonal array. A structural steel substrate was coated with nickel-based metal inert gas (MIG) welding wire using the CMT process while being shielded by a 99.9 percent pure argon gas. To attain the desired quality of weld bead, the CMT input parameters and geometry of the bead are separately and collectively optimized. Results: When the welding current (Iw) is set at 130A, welding speed (V) at 200 mm/min, and the distance between the nozzle and plate (X) at 5 mm, the Taguchi method indicates that the desired outcome is obtained with the following parameters: a penetration (P) of 1.115 mm, a reinforcement (R) of 1.51 mm, a bead width (W) of 4.265 mm, and a percentage of dilution (D) of 21.145%. Conclusions: The research findings indicate, under certain limitations, the techniques of the Taguchi method be utilized to efficiently manage the CMT cladding process parameters.","PeriodicalId":29806,"journal":{"name":"Materials Open Research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of input parameters to determine the shape of weld bead in cladding on 316L stainless steel using the Taguchi method\",\"authors\":\"Raviram R, Sachithananthan J, Mohandass M, Gurusamy V\",\"doi\":\"10.12688/materialsopenres.17569.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The Cold Metal Transfer (CMT) process, with its low heat input, is selected for cladding carbon steel in demanding industries such as mining, oil, gas, offshore, steel, and metal. Limited research exists on the utilization of Taguchi's technique in welding and cladding processes. The main objective of the present research is to employ the Taguchi approach for determining the impact of CMT parameters on the cladding geometry of 316L stainless steel. Methods: The influence of process parameters on the weld bead was examined using both Signal-to-Noise (S/N) ratio and Analysis of Variance (ANOVA) by implementing an orthogonal array. A structural steel substrate was coated with nickel-based metal inert gas (MIG) welding wire using the CMT process while being shielded by a 99.9 percent pure argon gas. To attain the desired quality of weld bead, the CMT input parameters and geometry of the bead are separately and collectively optimized. Results: When the welding current (Iw) is set at 130A, welding speed (V) at 200 mm/min, and the distance between the nozzle and plate (X) at 5 mm, the Taguchi method indicates that the desired outcome is obtained with the following parameters: a penetration (P) of 1.115 mm, a reinforcement (R) of 1.51 mm, a bead width (W) of 4.265 mm, and a percentage of dilution (D) of 21.145%. Conclusions: The research findings indicate, under certain limitations, the techniques of the Taguchi method be utilized to efficiently manage the CMT cladding process parameters.\",\"PeriodicalId\":29806,\"journal\":{\"name\":\"Materials Open Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Open Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/materialsopenres.17569.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Open Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/materialsopenres.17569.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of input parameters to determine the shape of weld bead in cladding on 316L stainless steel using the Taguchi method
Background: The Cold Metal Transfer (CMT) process, with its low heat input, is selected for cladding carbon steel in demanding industries such as mining, oil, gas, offshore, steel, and metal. Limited research exists on the utilization of Taguchi's technique in welding and cladding processes. The main objective of the present research is to employ the Taguchi approach for determining the impact of CMT parameters on the cladding geometry of 316L stainless steel. Methods: The influence of process parameters on the weld bead was examined using both Signal-to-Noise (S/N) ratio and Analysis of Variance (ANOVA) by implementing an orthogonal array. A structural steel substrate was coated with nickel-based metal inert gas (MIG) welding wire using the CMT process while being shielded by a 99.9 percent pure argon gas. To attain the desired quality of weld bead, the CMT input parameters and geometry of the bead are separately and collectively optimized. Results: When the welding current (Iw) is set at 130A, welding speed (V) at 200 mm/min, and the distance between the nozzle and plate (X) at 5 mm, the Taguchi method indicates that the desired outcome is obtained with the following parameters: a penetration (P) of 1.115 mm, a reinforcement (R) of 1.51 mm, a bead width (W) of 4.265 mm, and a percentage of dilution (D) of 21.145%. Conclusions: The research findings indicate, under certain limitations, the techniques of the Taguchi method be utilized to efficiently manage the CMT cladding process parameters.
期刊介绍:
Materials Open Research is a rapid open access publishing platform for a broad range of materials science research. The platform welcomes theoretical, experimental, and modelling approaches on the properties, characterization, design, structure, classification, processing, and performance of materials, and their applications. The platform is open to submissions from researchers, practitioners and experts, and all articles will benefit from open peer review.
Materials research underpins many significant and novel technologies which are set to revolutionize our society, and Materials Open Research is well-suited to ensure fast and full access to this research for the benefit of the academic community, industry, and beyond.
The platform aims to create a forum for discussion and for the dissemination of research in all areas of materials science and engineering. This includes, but is not limited to, research on the following material classes:
● Biomaterials and biomedical materials
● Composites
● Economic minerals
● Electronic materials
● Glasses & ceramics
● Magnetic materials
● Metals & alloys
● Nanomaterials and nanostructures
● Polymers
● Porous materials
● Quantum materials
● Smart materials
● Soft matter
● Structural materials
● Superconducting materials
● Thin films
Materials Open Research also focuses on a range of applications and approaches within materials science, including but not limited to:
● Additive manufacturing
● Computational materials & modelling
● Materials in energy & the environment
● Materials informatics
● Materials synthesis and processing
In addition to original Research Articles, Materials Open Research will feature a variety of article types including Method Articles, Study Protocols, Software Tool Articles, Systematic Reviews, Data Notes, Brief Reports, and Opinion Articles. All research is welcome and will be published irrespective of the perceived level of interest or novelty; we accept confirmatory and replication studies, as well as negative and null results.
Materials Open Research is an Open Research Platform. All articles are published open access under a CC-BY license and authors benefit from fully transparent publishing and peer review processes. Where applicable, authors are asked to include detailed descriptions of methods and will receive editorial guidance on making all underlying data openly available in order to improve reproducibility. The platform will also provide the option to publish non-peer reviewed materials including technical reports, training materials, posters, slides, and other documents.