MXene Ti3C2修饰的g-C3N4/ZnO光催化剂具有改善的光催化CO2还原性能

IF 9.9 2区 材料科学 Q1 Engineering
Jianxin Li , Yuhua Wang , Yitong Wang , Yao Guo , Shiding Zhang , Haixiang Song , Xianchang Li , Qianqian Gao , Wanyu Shang , Shuaishuai Hu , Huibin Zheng , Xifei Li
{"title":"MXene Ti3C2修饰的g-C3N4/ZnO光催化剂具有改善的光催化CO2还原性能","authors":"Jianxin Li ,&nbsp;Yuhua Wang ,&nbsp;Yitong Wang ,&nbsp;Yao Guo ,&nbsp;Shiding Zhang ,&nbsp;Haixiang Song ,&nbsp;Xianchang Li ,&nbsp;Qianqian Gao ,&nbsp;Wanyu Shang ,&nbsp;Shuaishuai Hu ,&nbsp;Huibin Zheng ,&nbsp;Xifei Li","doi":"10.1016/j.nanoms.2023.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic reduction of CO<sub>2</sub> is considered as a kind of promising technologies for solving the greenhouse effect. Herein, a novel hybrid structure of g-C<sub>3</sub>N<sub>4</sub>/ZnO/Ti<sub>3</sub>C<sub>2</sub> photocatalysts was designed and fabricated to investigate their abilities for CO<sub>2</sub> reduction. As demonstration, heterojunction of g-C<sub>3</sub>N<sub>4</sub>/ZnO can improve photogenerated carriers’ separation, the addition of Ti<sub>3</sub>C<sub>2</sub> fragments can further facilitate the photocatalytic performance from CO<sub>2</sub> to CO. Hence, g-C<sub>3</sub>N<sub>4</sub>/ZnO/Ti<sub>3</sub>C<sub>2</sub> has efficiently increased CO production by 8 and 12 times than pristine g-C<sub>3</sub>N<sub>4</sub> and ZnO, respectively. Which is ascribed to the photogenerated charge migration promoted by metallic Ti<sub>3</sub>C<sub>2</sub>. This work provides a guideline for designing efficient hybrid catalysts on other applications in the renewable energy fields.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"5 2","pages":"Pages 237-245"},"PeriodicalIF":9.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"MXene Ti3C2 decorated g-C3N4/ZnO photocatalysts with improved photocatalytic performance for CO2 reduction\",\"authors\":\"Jianxin Li ,&nbsp;Yuhua Wang ,&nbsp;Yitong Wang ,&nbsp;Yao Guo ,&nbsp;Shiding Zhang ,&nbsp;Haixiang Song ,&nbsp;Xianchang Li ,&nbsp;Qianqian Gao ,&nbsp;Wanyu Shang ,&nbsp;Shuaishuai Hu ,&nbsp;Huibin Zheng ,&nbsp;Xifei Li\",\"doi\":\"10.1016/j.nanoms.2023.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photocatalytic reduction of CO<sub>2</sub> is considered as a kind of promising technologies for solving the greenhouse effect. Herein, a novel hybrid structure of g-C<sub>3</sub>N<sub>4</sub>/ZnO/Ti<sub>3</sub>C<sub>2</sub> photocatalysts was designed and fabricated to investigate their abilities for CO<sub>2</sub> reduction. As demonstration, heterojunction of g-C<sub>3</sub>N<sub>4</sub>/ZnO can improve photogenerated carriers’ separation, the addition of Ti<sub>3</sub>C<sub>2</sub> fragments can further facilitate the photocatalytic performance from CO<sub>2</sub> to CO. Hence, g-C<sub>3</sub>N<sub>4</sub>/ZnO/Ti<sub>3</sub>C<sub>2</sub> has efficiently increased CO production by 8 and 12 times than pristine g-C<sub>3</sub>N<sub>4</sub> and ZnO, respectively. Which is ascribed to the photogenerated charge migration promoted by metallic Ti<sub>3</sub>C<sub>2</sub>. This work provides a guideline for designing efficient hybrid catalysts on other applications in the renewable energy fields.</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"5 2\",\"pages\":\"Pages 237-245\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000065\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000065","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 17

摘要

光催化还原CO2被认为是解决温室效应的一种很有前途的技术。本文设计并制备了一种新型的g-C3N4/ZnO/Ti3C2光催化剂杂化结构,以研究其还原CO2的能力。作为证明,g-C3N4/ZnO的异质结可以改善光生载流子的分离,Ti3C2片段的添加可以进一步促进从CO2到CO的光催化性能。因此,g-C3N1/ZnO/Ti3C2分别比原始g-C3N4和ZnO有效地增加了8倍和12倍的CO产量。这归因于金属Ti3C2促进的光生电荷迁移。这项工作为在可再生能源领域的其他应用中设计高效的混合催化剂提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MXene Ti3C2 decorated g-C3N4/ZnO photocatalysts with improved photocatalytic performance for CO2 reduction

MXene Ti3C2 decorated g-C3N4/ZnO photocatalysts with improved photocatalytic performance for CO2 reduction

Photocatalytic reduction of CO2 is considered as a kind of promising technologies for solving the greenhouse effect. Herein, a novel hybrid structure of g-C3N4/ZnO/Ti3C2 photocatalysts was designed and fabricated to investigate their abilities for CO2 reduction. As demonstration, heterojunction of g-C3N4/ZnO can improve photogenerated carriers’ separation, the addition of Ti3C2 fragments can further facilitate the photocatalytic performance from CO2 to CO. Hence, g-C3N4/ZnO/Ti3C2 has efficiently increased CO production by 8 and 12 times than pristine g-C3N4 and ZnO, respectively. Which is ascribed to the photogenerated charge migration promoted by metallic Ti3C2. This work provides a guideline for designing efficient hybrid catalysts on other applications in the renewable energy fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信