{"title":"全球个性化医学生物标志物研究的文献计量和语义分析","authors":"Aida Khakimova, F. Rahim, O. Zolotarev","doi":"10.2174/18753183-v12-e220926-2022-3","DOIUrl":null,"url":null,"abstract":"\n \n The aims of the research were to study the citation history of popular articles in the field of biomarkers in personalized medicine, to study the use of terms in the sections of articles, and to consider the key terminology of the most-cited articles and its visualization.\n \n \n \n The article describes approaches to the analysis of publication activity in the field of biomarkers and personalized medicine based on the data from the Web of Science.\n \n \n \n The aim of this study is a bibliometric and semantic analysis of the investigation field related to the application of biomarkers for the purposes of personalized medicine.\n \n \n \n The evaluation of a number of publications and its’ citations was carried out. The key terms extracted from the most-cited articles were divided into thematic groups. The number of citations of the most popular articles since 2011 was estimated.\n \n \n \n The citation histories of the top ten articles were considered. Analysis of key terms from different parts of the most-cited articles included statistics and thematic ranking. The comparison of key terms from the most-cited article and the citing articles allowed us to show that the key terminology of the cited article extends to the citing articles. We presented the key terms of the most-cited articles as a terminological map.\n \n \n \n The study of citation of the articles in the field of personalized medicine and biomarkers was based on a survey on the Web of Science. Based on the analysis of a number of citations the trends and citation histories were constructed. The statistical and thematic analysis of the use of keywords in different sections of articles was done. We have shown that the citing articles spread the key terms of the cited article to identify trends in knowledge development which could be presented as a terminological map.\n \n \n \n We presented the results in the form of a terminological map of the latest developments in the field of biomarkers in personalized medicine based on proposed principles.\n","PeriodicalId":39398,"journal":{"name":"Open Biomarkers Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bibliometric and Semantic Analysis of the Global Research on Biomarkers in Personalized Medicine\",\"authors\":\"Aida Khakimova, F. Rahim, O. Zolotarev\",\"doi\":\"10.2174/18753183-v12-e220926-2022-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n The aims of the research were to study the citation history of popular articles in the field of biomarkers in personalized medicine, to study the use of terms in the sections of articles, and to consider the key terminology of the most-cited articles and its visualization.\\n \\n \\n \\n The article describes approaches to the analysis of publication activity in the field of biomarkers and personalized medicine based on the data from the Web of Science.\\n \\n \\n \\n The aim of this study is a bibliometric and semantic analysis of the investigation field related to the application of biomarkers for the purposes of personalized medicine.\\n \\n \\n \\n The evaluation of a number of publications and its’ citations was carried out. The key terms extracted from the most-cited articles were divided into thematic groups. The number of citations of the most popular articles since 2011 was estimated.\\n \\n \\n \\n The citation histories of the top ten articles were considered. Analysis of key terms from different parts of the most-cited articles included statistics and thematic ranking. The comparison of key terms from the most-cited article and the citing articles allowed us to show that the key terminology of the cited article extends to the citing articles. We presented the key terms of the most-cited articles as a terminological map.\\n \\n \\n \\n The study of citation of the articles in the field of personalized medicine and biomarkers was based on a survey on the Web of Science. Based on the analysis of a number of citations the trends and citation histories were constructed. The statistical and thematic analysis of the use of keywords in different sections of articles was done. We have shown that the citing articles spread the key terms of the cited article to identify trends in knowledge development which could be presented as a terminological map.\\n \\n \\n \\n We presented the results in the form of a terminological map of the latest developments in the field of biomarkers in personalized medicine based on proposed principles.\\n\",\"PeriodicalId\":39398,\"journal\":{\"name\":\"Open Biomarkers Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Biomarkers Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/18753183-v12-e220926-2022-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biomarkers Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/18753183-v12-e220926-2022-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Bibliometric and Semantic Analysis of the Global Research on Biomarkers in Personalized Medicine
The aims of the research were to study the citation history of popular articles in the field of biomarkers in personalized medicine, to study the use of terms in the sections of articles, and to consider the key terminology of the most-cited articles and its visualization.
The article describes approaches to the analysis of publication activity in the field of biomarkers and personalized medicine based on the data from the Web of Science.
The aim of this study is a bibliometric and semantic analysis of the investigation field related to the application of biomarkers for the purposes of personalized medicine.
The evaluation of a number of publications and its’ citations was carried out. The key terms extracted from the most-cited articles were divided into thematic groups. The number of citations of the most popular articles since 2011 was estimated.
The citation histories of the top ten articles were considered. Analysis of key terms from different parts of the most-cited articles included statistics and thematic ranking. The comparison of key terms from the most-cited article and the citing articles allowed us to show that the key terminology of the cited article extends to the citing articles. We presented the key terms of the most-cited articles as a terminological map.
The study of citation of the articles in the field of personalized medicine and biomarkers was based on a survey on the Web of Science. Based on the analysis of a number of citations the trends and citation histories were constructed. The statistical and thematic analysis of the use of keywords in different sections of articles was done. We have shown that the citing articles spread the key terms of the cited article to identify trends in knowledge development which could be presented as a terminological map.
We presented the results in the form of a terminological map of the latest developments in the field of biomarkers in personalized medicine based on proposed principles.
期刊介绍:
The Open Biomarkers Journal is an Open Access online journal, which publishes original full-length, short research articles and reviews on biomarkers in clinical, medical and pharmaceutical research. The coverage includes biomarkers of disease, new biomarkers, exposure to drugs, genetic effects, and applications of biomarkers. The Open Biomarkers Journal, a peer reviewed journal, aims to provide the most complete and reliable source of information on current developments in the field. The emphasis will be on publishing quality articles rapidly and freely available to researchers worldwide.